123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161 |
- import json
- import math
- import re
- import threading
- from collections import Counter, defaultdict
- from collections.abc import Generator, Mapping
- from typing import Any, Optional, Union, cast
- from flask import Flask, current_app
- from sqlalchemy import Integer, and_, or_, text
- from sqlalchemy import cast as sqlalchemy_cast
- from core.app.app_config.entities import (
- DatasetEntity,
- DatasetRetrieveConfigEntity,
- MetadataFilteringCondition,
- ModelConfig,
- )
- from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
- from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
- from core.entities.agent_entities import PlanningStrategy
- from core.entities.model_entities import ModelStatus
- from core.memory.token_buffer_memory import TokenBufferMemory
- from core.model_manager import ModelInstance, ModelManager
- from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage
- from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageRole, PromptMessageTool
- from core.model_runtime.entities.model_entities import ModelFeature, ModelType
- from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
- from core.ops.entities.trace_entity import TraceTaskName
- from core.ops.ops_trace_manager import TraceQueueManager, TraceTask
- from core.ops.utils import measure_time
- from core.prompt.advanced_prompt_transform import AdvancedPromptTransform
- from core.prompt.entities.advanced_prompt_entities import ChatModelMessage, CompletionModelPromptTemplate
- from core.prompt.simple_prompt_transform import ModelMode
- from core.rag.data_post_processor.data_post_processor import DataPostProcessor
- from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaKeywordTableHandler
- from core.rag.datasource.retrieval_service import RetrievalService
- from core.rag.entities.context_entities import DocumentContext
- from core.rag.entities.metadata_entities import Condition, MetadataCondition
- from core.rag.index_processor.constant.index_type import IndexType
- from core.rag.models.document import Document
- from core.rag.rerank.rerank_type import RerankMode
- from core.rag.retrieval.retrieval_methods import RetrievalMethod
- from core.rag.retrieval.router.multi_dataset_function_call_router import FunctionCallMultiDatasetRouter
- from core.rag.retrieval.router.multi_dataset_react_route import ReactMultiDatasetRouter
- from core.rag.retrieval.template_prompts import (
- METADATA_FILTER_ASSISTANT_PROMPT_1,
- METADATA_FILTER_ASSISTANT_PROMPT_2,
- METADATA_FILTER_COMPLETION_PROMPT,
- METADATA_FILTER_SYSTEM_PROMPT,
- METADATA_FILTER_USER_PROMPT_1,
- METADATA_FILTER_USER_PROMPT_2,
- METADATA_FILTER_USER_PROMPT_3,
- )
- from core.tools.utils.dataset_retriever.dataset_retriever_base_tool import DatasetRetrieverBaseTool
- from extensions.ext_database import db
- from libs.json_in_md_parser import parse_and_check_json_markdown
- from models.dataset import ChildChunk, Dataset, DatasetMetadata, DatasetQuery, DocumentSegment
- from models.dataset import Document as DatasetDocument
- from services.external_knowledge_service import ExternalDatasetService
- default_retrieval_model: dict[str, Any] = {
- "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
- "reranking_enable": False,
- "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
- "top_k": 2,
- "score_threshold_enabled": False,
- }
- class DatasetRetrieval:
- def __init__(self, application_generate_entity=None):
- self.application_generate_entity = application_generate_entity
- def retrieve(
- self,
- app_id: str,
- user_id: str,
- tenant_id: str,
- model_config: ModelConfigWithCredentialsEntity,
- config: DatasetEntity,
- query: str,
- invoke_from: InvokeFrom,
- show_retrieve_source: bool,
- hit_callback: DatasetIndexToolCallbackHandler,
- message_id: str,
- memory: Optional[TokenBufferMemory] = None,
- inputs: Optional[Mapping[str, Any]] = None,
- ) -> Optional[str]:
- """
- Retrieve dataset.
- :param app_id: app_id
- :param user_id: user_id
- :param tenant_id: tenant id
- :param model_config: model config
- :param config: dataset config
- :param query: query
- :param invoke_from: invoke from
- :param show_retrieve_source: show retrieve source
- :param hit_callback: hit callback
- :param message_id: message id
- :param memory: memory
- :return:
- """
- dataset_ids = config.dataset_ids
- if len(dataset_ids) == 0:
- return None
- retrieve_config = config.retrieve_config
- # check model is support tool calling
- model_type_instance = model_config.provider_model_bundle.model_type_instance
- model_type_instance = cast(LargeLanguageModel, model_type_instance)
- model_manager = ModelManager()
- model_instance = model_manager.get_model_instance(
- tenant_id=tenant_id, model_type=ModelType.LLM, provider=model_config.provider, model=model_config.model
- )
- # get model schema
- model_schema = model_type_instance.get_model_schema(
- model=model_config.model, credentials=model_config.credentials
- )
- if not model_schema:
- return None
- planning_strategy = PlanningStrategy.REACT_ROUTER
- features = model_schema.features
- if features:
- if ModelFeature.TOOL_CALL in features or ModelFeature.MULTI_TOOL_CALL in features:
- planning_strategy = PlanningStrategy.ROUTER
- available_datasets = []
- for dataset_id in dataset_ids:
- # get dataset from dataset id
- dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
- # pass if dataset is not available
- if not dataset:
- continue
- # pass if dataset is not available
- if dataset and dataset.available_document_count == 0 and dataset.provider != "external":
- continue
- available_datasets.append(dataset)
- if inputs:
- inputs = {key: str(value) for key, value in inputs.items()}
- else:
- inputs = {}
- available_datasets_ids = [dataset.id for dataset in available_datasets]
- metadata_filter_document_ids, metadata_condition = self._get_metadata_filter_condition(
- available_datasets_ids,
- query,
- tenant_id,
- user_id,
- retrieve_config.metadata_filtering_mode, # type: ignore
- retrieve_config.metadata_model_config, # type: ignore
- retrieve_config.metadata_filtering_conditions,
- inputs,
- )
- all_documents = []
- user_from = "account" if invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER} else "end_user"
- if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
- all_documents = self.single_retrieve(
- app_id,
- tenant_id,
- user_id,
- user_from,
- available_datasets,
- query,
- model_instance,
- model_config,
- planning_strategy,
- message_id,
- metadata_filter_document_ids,
- metadata_condition,
- )
- elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
- all_documents = self.multiple_retrieve(
- app_id,
- tenant_id,
- user_id,
- user_from,
- available_datasets,
- query,
- retrieve_config.top_k or 0,
- retrieve_config.score_threshold or 0,
- retrieve_config.rerank_mode or "reranking_model",
- retrieve_config.reranking_model,
- retrieve_config.weights,
- retrieve_config.reranking_enabled or True,
- message_id,
- metadata_filter_document_ids,
- metadata_condition,
- )
- dify_documents = [item for item in all_documents if item.provider == "dify"]
- external_documents = [item for item in all_documents if item.provider == "external"]
- document_context_list = []
- retrieval_resource_list = []
- # deal with external documents
- for item in external_documents:
- document_context_list.append(DocumentContext(content=item.page_content, score=item.metadata.get("score")))
- source = {
- "dataset_id": item.metadata.get("dataset_id"),
- "dataset_name": item.metadata.get("dataset_name"),
- "document_name": item.metadata.get("title"),
- "data_source_type": "external",
- "retriever_from": invoke_from.to_source(),
- "score": item.metadata.get("score"),
- "content": item.page_content,
- }
- retrieval_resource_list.append(source)
- # deal with dify documents
- if dify_documents:
- records = RetrievalService.format_retrieval_documents(dify_documents)
- if records:
- for record in records:
- segment = record.segment
- if segment.answer:
- document_context_list.append(
- DocumentContext(
- content=f"question:{segment.get_sign_content()} answer:{segment.answer}",
- score=record.score,
- )
- )
- else:
- document_context_list.append(
- DocumentContext(
- content=segment.get_sign_content(),
- score=record.score,
- )
- )
- if show_retrieve_source:
- for record in records:
- segment = record.segment
- dataset = Dataset.query.filter_by(id=segment.dataset_id).first()
- document = DatasetDocument.query.filter(
- DatasetDocument.id == segment.document_id,
- DatasetDocument.enabled == True,
- DatasetDocument.archived == False,
- ).first()
- if dataset and document:
- source = {
- "dataset_id": dataset.id,
- "dataset_name": dataset.name,
- "document_id": document.id,
- "document_name": document.name,
- "data_source_type": document.data_source_type,
- "segment_id": segment.id,
- "retriever_from": invoke_from.to_source(),
- "score": record.score or 0.0,
- "doc_metadata": document.doc_metadata,
- }
- if invoke_from.to_source() == "dev":
- source["hit_count"] = segment.hit_count
- source["word_count"] = segment.word_count
- source["segment_position"] = segment.position
- source["index_node_hash"] = segment.index_node_hash
- if segment.answer:
- source["content"] = f"question:{segment.content} \nanswer:{segment.answer}"
- else:
- source["content"] = segment.content
- retrieval_resource_list.append(source)
- if hit_callback and retrieval_resource_list:
- retrieval_resource_list = sorted(retrieval_resource_list, key=lambda x: x.get("score") or 0.0, reverse=True)
- for position, item in enumerate(retrieval_resource_list, start=1):
- item["position"] = position
- hit_callback.return_retriever_resource_info(retrieval_resource_list)
- if document_context_list:
- document_context_list = sorted(document_context_list, key=lambda x: x.score or 0.0, reverse=True)
- return str("\n".join([document_context.content for document_context in document_context_list]))
- return ""
- def single_retrieve(
- self,
- app_id: str,
- tenant_id: str,
- user_id: str,
- user_from: str,
- available_datasets: list,
- query: str,
- model_instance: ModelInstance,
- model_config: ModelConfigWithCredentialsEntity,
- planning_strategy: PlanningStrategy,
- message_id: Optional[str] = None,
- metadata_filter_document_ids: Optional[dict[str, list[str]]] = None,
- metadata_condition: Optional[MetadataCondition] = None,
- ):
- tools = []
- for dataset in available_datasets:
- description = dataset.description
- if not description:
- description = "useful for when you want to answer queries about the " + dataset.name
- description = description.replace("\n", "").replace("\r", "")
- message_tool = PromptMessageTool(
- name=dataset.id,
- description=description,
- parameters={
- "type": "object",
- "properties": {},
- "required": [],
- },
- )
- tools.append(message_tool)
- dataset_id = None
- if planning_strategy == PlanningStrategy.REACT_ROUTER:
- react_multi_dataset_router = ReactMultiDatasetRouter()
- dataset_id = react_multi_dataset_router.invoke(
- query, tools, model_config, model_instance, user_id, tenant_id
- )
- elif planning_strategy == PlanningStrategy.ROUTER:
- function_call_router = FunctionCallMultiDatasetRouter()
- dataset_id = function_call_router.invoke(query, tools, model_config, model_instance)
- if dataset_id:
- # get retrieval model config
- dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
- if dataset:
- results = []
- if dataset.provider == "external":
- external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
- tenant_id=dataset.tenant_id,
- dataset_id=dataset_id,
- query=query,
- external_retrieval_parameters=dataset.retrieval_model,
- metadata_condition=metadata_condition,
- )
- for external_document in external_documents:
- document = Document(
- page_content=external_document.get("content"),
- metadata=external_document.get("metadata"),
- provider="external",
- )
- if document.metadata is not None:
- document.metadata["score"] = external_document.get("score")
- document.metadata["title"] = external_document.get("title")
- document.metadata["dataset_id"] = dataset_id
- document.metadata["dataset_name"] = dataset.name
- results.append(document)
- else:
- if metadata_condition and not metadata_filter_document_ids:
- return []
- document_ids_filter = None
- if metadata_filter_document_ids:
- document_ids = metadata_filter_document_ids.get(dataset.id, [])
- if document_ids:
- document_ids_filter = document_ids
- else:
- return []
- retrieval_model_config = dataset.retrieval_model or default_retrieval_model
- # get top k
- top_k = retrieval_model_config["top_k"]
- # get retrieval method
- if dataset.indexing_technique == "economy":
- retrieval_method = "keyword_search"
- else:
- retrieval_method = retrieval_model_config["search_method"]
- # get reranking model
- reranking_model = (
- retrieval_model_config["reranking_model"]
- if retrieval_model_config["reranking_enable"]
- else None
- )
- # get score threshold
- score_threshold = 0.0
- score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
- if score_threshold_enabled:
- score_threshold = retrieval_model_config.get("score_threshold", 0.0)
- with measure_time() as timer:
- results = RetrievalService.retrieve(
- retrieval_method=retrieval_method,
- dataset_id=dataset.id,
- query=query,
- top_k=top_k,
- score_threshold=score_threshold,
- reranking_model=reranking_model,
- reranking_mode=retrieval_model_config.get("reranking_mode", "reranking_model"),
- weights=retrieval_model_config.get("weights", None),
- document_ids_filter=document_ids_filter,
- )
- self._on_query(query, [dataset_id], app_id, user_from, user_id)
- if results:
- self._on_retrieval_end(results, message_id, timer)
- return results
- return []
- def multiple_retrieve(
- self,
- app_id: str,
- tenant_id: str,
- user_id: str,
- user_from: str,
- available_datasets: list,
- query: str,
- top_k: int,
- score_threshold: float,
- reranking_mode: str,
- reranking_model: Optional[dict] = None,
- weights: Optional[dict[str, Any]] = None,
- reranking_enable: bool = True,
- message_id: Optional[str] = None,
- metadata_filter_document_ids: Optional[dict[str, list[str]]] = None,
- metadata_condition: Optional[MetadataCondition] = None,
- ):
- if not available_datasets:
- return []
- threads = []
- all_documents: list[Document] = []
- dataset_ids = [dataset.id for dataset in available_datasets]
- index_type_check = all(
- item.indexing_technique == available_datasets[0].indexing_technique for item in available_datasets
- )
- if not index_type_check and (not reranking_enable or reranking_mode != RerankMode.RERANKING_MODEL):
- raise ValueError(
- "The configured knowledge base list have different indexing technique, please set reranking model."
- )
- index_type = available_datasets[0].indexing_technique
- if index_type == "high_quality":
- embedding_model_check = all(
- item.embedding_model == available_datasets[0].embedding_model for item in available_datasets
- )
- embedding_model_provider_check = all(
- item.embedding_model_provider == available_datasets[0].embedding_model_provider
- for item in available_datasets
- )
- if (
- reranking_enable
- and reranking_mode == "weighted_score"
- and (not embedding_model_check or not embedding_model_provider_check)
- ):
- raise ValueError(
- "The configured knowledge base list have different embedding model, please set reranking model."
- )
- if reranking_enable and reranking_mode == RerankMode.WEIGHTED_SCORE:
- if weights is not None:
- weights["vector_setting"]["embedding_provider_name"] = available_datasets[
- 0
- ].embedding_model_provider
- weights["vector_setting"]["embedding_model_name"] = available_datasets[0].embedding_model
- for dataset in available_datasets:
- index_type = dataset.indexing_technique
- document_ids_filter = None
- if dataset.provider != "external":
- if metadata_condition and not metadata_filter_document_ids:
- continue
- if metadata_filter_document_ids:
- document_ids = metadata_filter_document_ids.get(dataset.id, [])
- if document_ids:
- document_ids_filter = document_ids
- else:
- continue
- retrieval_thread = threading.Thread(
- target=self._retriever,
- kwargs={
- "flask_app": current_app._get_current_object(), # type: ignore
- "dataset_id": dataset.id,
- "query": query,
- "top_k": top_k,
- "all_documents": all_documents,
- "document_ids_filter": document_ids_filter,
- "metadata_condition": metadata_condition,
- },
- )
- threads.append(retrieval_thread)
- retrieval_thread.start()
- for thread in threads:
- thread.join()
- with measure_time() as timer:
- if reranking_enable:
- # do rerank for searched documents
- data_post_processor = DataPostProcessor(tenant_id, reranking_mode, reranking_model, weights, False)
- all_documents = data_post_processor.invoke(
- query=query, documents=all_documents, score_threshold=score_threshold, top_n=top_k
- )
- else:
- if index_type == "economy":
- all_documents = self.calculate_keyword_score(query, all_documents, top_k)
- elif index_type == "high_quality":
- all_documents = self.calculate_vector_score(all_documents, top_k, score_threshold)
- self._on_query(query, dataset_ids, app_id, user_from, user_id)
- if all_documents:
- self._on_retrieval_end(all_documents, message_id, timer)
- return all_documents
- def _on_retrieval_end(
- self, documents: list[Document], message_id: Optional[str] = None, timer: Optional[dict] = None
- ) -> None:
- """Handle retrieval end."""
- dify_documents = [document for document in documents if document.provider == "dify"]
- for document in dify_documents:
- if document.metadata is not None:
- dataset_document = DatasetDocument.query.filter(
- DatasetDocument.id == document.metadata["document_id"]
- ).first()
- if dataset_document:
- if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
- child_chunk = ChildChunk.query.filter(
- ChildChunk.index_node_id == document.metadata["doc_id"],
- ChildChunk.dataset_id == dataset_document.dataset_id,
- ChildChunk.document_id == dataset_document.id,
- ).first()
- if child_chunk:
- segment = DocumentSegment.query.filter(DocumentSegment.id == child_chunk.segment_id).update(
- {DocumentSegment.hit_count: DocumentSegment.hit_count + 1}, synchronize_session=False
- )
- db.session.commit()
- else:
- query = db.session.query(DocumentSegment).filter(
- DocumentSegment.index_node_id == document.metadata["doc_id"]
- )
- # if 'dataset_id' in document.metadata:
- if "dataset_id" in document.metadata:
- query = query.filter(DocumentSegment.dataset_id == document.metadata["dataset_id"])
- # add hit count to document segment
- query.update(
- {DocumentSegment.hit_count: DocumentSegment.hit_count + 1}, synchronize_session=False
- )
- db.session.commit()
- # get tracing instance
- trace_manager: TraceQueueManager | None = (
- self.application_generate_entity.trace_manager if self.application_generate_entity else None
- )
- if trace_manager:
- trace_manager.add_trace_task(
- TraceTask(
- TraceTaskName.DATASET_RETRIEVAL_TRACE, message_id=message_id, documents=documents, timer=timer
- )
- )
- def _on_query(self, query: str, dataset_ids: list[str], app_id: str, user_from: str, user_id: str) -> None:
- """
- Handle query.
- """
- if not query:
- return
- dataset_queries = []
- for dataset_id in dataset_ids:
- dataset_query = DatasetQuery(
- dataset_id=dataset_id,
- content=query,
- source="app",
- source_app_id=app_id,
- created_by_role=user_from,
- created_by=user_id,
- )
- dataset_queries.append(dataset_query)
- if dataset_queries:
- db.session.add_all(dataset_queries)
- db.session.commit()
- def _retriever(
- self,
- flask_app: Flask,
- dataset_id: str,
- query: str,
- top_k: int,
- all_documents: list,
- document_ids_filter: Optional[list[str]] = None,
- metadata_condition: Optional[MetadataCondition] = None,
- ):
- with flask_app.app_context():
- dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
- if not dataset:
- return []
- if dataset.provider == "external":
- external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
- tenant_id=dataset.tenant_id,
- dataset_id=dataset_id,
- query=query,
- external_retrieval_parameters=dataset.retrieval_model,
- metadata_condition=metadata_condition,
- )
- for external_document in external_documents:
- document = Document(
- page_content=external_document.get("content"),
- metadata=external_document.get("metadata"),
- provider="external",
- )
- if document.metadata is not None:
- document.metadata["score"] = external_document.get("score")
- document.metadata["title"] = external_document.get("title")
- document.metadata["dataset_id"] = dataset_id
- document.metadata["dataset_name"] = dataset.name
- all_documents.append(document)
- else:
- # get retrieval model , if the model is not setting , using default
- retrieval_model = dataset.retrieval_model or default_retrieval_model
- if dataset.indexing_technique == "economy":
- # use keyword table query
- documents = RetrievalService.retrieve(
- retrieval_method="keyword_search",
- dataset_id=dataset.id,
- query=query,
- top_k=top_k,
- document_ids_filter=document_ids_filter,
- )
- if documents:
- all_documents.extend(documents)
- else:
- if top_k > 0:
- # retrieval source
- documents = RetrievalService.retrieve(
- retrieval_method=retrieval_model["search_method"],
- dataset_id=dataset.id,
- query=query,
- top_k=retrieval_model.get("top_k") or 2,
- score_threshold=retrieval_model.get("score_threshold", 0.0)
- if retrieval_model["score_threshold_enabled"]
- else 0.0,
- reranking_model=retrieval_model.get("reranking_model", None)
- if retrieval_model["reranking_enable"]
- else None,
- reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
- weights=retrieval_model.get("weights", None),
- document_ids_filter=document_ids_filter,
- )
- all_documents.extend(documents)
- def to_dataset_retriever_tool(
- self,
- tenant_id: str,
- dataset_ids: list[str],
- retrieve_config: DatasetRetrieveConfigEntity,
- return_resource: bool,
- invoke_from: InvokeFrom,
- hit_callback: DatasetIndexToolCallbackHandler,
- ) -> Optional[list[DatasetRetrieverBaseTool]]:
- """
- A dataset tool is a tool that can be used to retrieve information from a dataset
- :param tenant_id: tenant id
- :param dataset_ids: dataset ids
- :param retrieve_config: retrieve config
- :param return_resource: return resource
- :param invoke_from: invoke from
- :param hit_callback: hit callback
- """
- tools = []
- available_datasets = []
- for dataset_id in dataset_ids:
- # get dataset from dataset id
- dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
- # pass if dataset is not available
- if not dataset:
- continue
- # pass if dataset is not available
- if dataset and dataset.provider != "external" and dataset.available_document_count == 0:
- continue
- available_datasets.append(dataset)
- if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
- # get retrieval model config
- default_retrieval_model = {
- "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
- "reranking_enable": False,
- "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
- "top_k": 2,
- "score_threshold_enabled": False,
- }
- for dataset in available_datasets:
- retrieval_model_config = dataset.retrieval_model or default_retrieval_model
- # get top k
- top_k = retrieval_model_config["top_k"]
- # get score threshold
- score_threshold = None
- score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
- if score_threshold_enabled:
- score_threshold = retrieval_model_config.get("score_threshold")
- from core.tools.utils.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
- tool = DatasetRetrieverTool.from_dataset(
- dataset=dataset,
- top_k=top_k,
- score_threshold=score_threshold,
- hit_callbacks=[hit_callback],
- return_resource=return_resource,
- retriever_from=invoke_from.to_source(),
- )
- tools.append(tool)
- elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
- from core.tools.utils.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
- if retrieve_config.reranking_model is None:
- raise ValueError("Reranking model is required for multiple retrieval")
- tool = DatasetMultiRetrieverTool.from_dataset(
- dataset_ids=[dataset.id for dataset in available_datasets],
- tenant_id=tenant_id,
- top_k=retrieve_config.top_k or 2,
- score_threshold=retrieve_config.score_threshold,
- hit_callbacks=[hit_callback],
- return_resource=return_resource,
- retriever_from=invoke_from.to_source(),
- reranking_provider_name=retrieve_config.reranking_model.get("reranking_provider_name"),
- reranking_model_name=retrieve_config.reranking_model.get("reranking_model_name"),
- )
- tools.append(tool)
- return tools
- def calculate_keyword_score(self, query: str, documents: list[Document], top_k: int) -> list[Document]:
- """
- Calculate keywords scores
- :param query: search query
- :param documents: documents for reranking
- :return:
- """
- keyword_table_handler = JiebaKeywordTableHandler()
- query_keywords = keyword_table_handler.extract_keywords(query, None)
- documents_keywords = []
- for document in documents:
- if document.metadata is not None:
- # get the document keywords
- document_keywords = keyword_table_handler.extract_keywords(document.page_content, None)
- document.metadata["keywords"] = document_keywords
- documents_keywords.append(document_keywords)
- # Counter query keywords(TF)
- query_keyword_counts = Counter(query_keywords)
- # total documents
- total_documents = len(documents)
- # calculate all documents' keywords IDF
- all_keywords = set()
- for document_keywords in documents_keywords:
- all_keywords.update(document_keywords)
- keyword_idf = {}
- for keyword in all_keywords:
- # calculate include query keywords' documents
- doc_count_containing_keyword = sum(1 for doc_keywords in documents_keywords if keyword in doc_keywords)
- # IDF
- keyword_idf[keyword] = math.log((1 + total_documents) / (1 + doc_count_containing_keyword)) + 1
- query_tfidf = {}
- for keyword, count in query_keyword_counts.items():
- tf = count
- idf = keyword_idf.get(keyword, 0)
- query_tfidf[keyword] = tf * idf
- # calculate all documents' TF-IDF
- documents_tfidf = []
- for document_keywords in documents_keywords:
- document_keyword_counts = Counter(document_keywords)
- document_tfidf = {}
- for keyword, count in document_keyword_counts.items():
- tf = count
- idf = keyword_idf.get(keyword, 0)
- document_tfidf[keyword] = tf * idf
- documents_tfidf.append(document_tfidf)
- def cosine_similarity(vec1, vec2):
- intersection = set(vec1.keys()) & set(vec2.keys())
- numerator = sum(vec1[x] * vec2[x] for x in intersection)
- sum1 = sum(vec1[x] ** 2 for x in vec1)
- sum2 = sum(vec2[x] ** 2 for x in vec2)
- denominator = math.sqrt(sum1) * math.sqrt(sum2)
- if not denominator:
- return 0.0
- else:
- return float(numerator) / denominator
- similarities = []
- for document_tfidf in documents_tfidf:
- similarity = cosine_similarity(query_tfidf, document_tfidf)
- similarities.append(similarity)
- for document, score in zip(documents, similarities):
- # format document
- if document.metadata is not None:
- document.metadata["score"] = score
- documents = sorted(documents, key=lambda x: x.metadata.get("score", 0) if x.metadata else 0, reverse=True)
- return documents[:top_k] if top_k else documents
- def calculate_vector_score(
- self, all_documents: list[Document], top_k: int, score_threshold: float
- ) -> list[Document]:
- filter_documents = []
- for document in all_documents:
- if score_threshold is None or (document.metadata and document.metadata.get("score", 0) >= score_threshold):
- filter_documents.append(document)
- if not filter_documents:
- return []
- filter_documents = sorted(
- filter_documents, key=lambda x: x.metadata.get("score", 0) if x.metadata else 0, reverse=True
- )
- return filter_documents[:top_k] if top_k else filter_documents
- def _get_metadata_filter_condition(
- self,
- dataset_ids: list,
- query: str,
- tenant_id: str,
- user_id: str,
- metadata_filtering_mode: str,
- metadata_model_config: ModelConfig,
- metadata_filtering_conditions: Optional[MetadataFilteringCondition],
- inputs: dict,
- ) -> tuple[Optional[dict[str, list[str]]], Optional[MetadataCondition]]:
- document_query = db.session.query(DatasetDocument).filter(
- DatasetDocument.dataset_id.in_(dataset_ids),
- DatasetDocument.indexing_status == "completed",
- DatasetDocument.enabled == True,
- DatasetDocument.archived == False,
- )
- filters = [] # type: ignore
- metadata_condition = None
- if metadata_filtering_mode == "disabled":
- return None, None
- elif metadata_filtering_mode == "automatic":
- automatic_metadata_filters = self._automatic_metadata_filter_func(
- dataset_ids, query, tenant_id, user_id, metadata_model_config
- )
- if automatic_metadata_filters:
- conditions = []
- for filter in automatic_metadata_filters:
- self._process_metadata_filter_func(
- filter.get("condition"), # type: ignore
- filter.get("metadata_name"), # type: ignore
- filter.get("value"),
- filters, # type: ignore
- )
- conditions.append(
- Condition(
- name=filter.get("metadata_name"), # type: ignore
- comparison_operator=filter.get("condition"), # type: ignore
- value=filter.get("value"),
- )
- )
- metadata_condition = MetadataCondition(
- logical_operator=metadata_filtering_conditions.logical_operator, # type: ignore
- conditions=conditions,
- )
- elif metadata_filtering_mode == "manual":
- if metadata_filtering_conditions:
- metadata_condition = MetadataCondition(**metadata_filtering_conditions.model_dump())
- for condition in metadata_filtering_conditions.conditions: # type: ignore
- metadata_name = condition.name
- expected_value = condition.value
- if expected_value is not None or condition.comparison_operator in ("empty", "not empty"):
- if isinstance(expected_value, str):
- expected_value = self._replace_metadata_filter_value(expected_value, inputs)
- filters = self._process_metadata_filter_func(
- condition.comparison_operator, metadata_name, expected_value, filters
- )
- else:
- raise ValueError("Invalid metadata filtering mode")
- if filters:
- if metadata_filtering_conditions.logical_operator == "or": # type: ignore
- document_query = document_query.filter(or_(*filters))
- else:
- document_query = document_query.filter(and_(*filters))
- documents = document_query.all()
- # group by dataset_id
- metadata_filter_document_ids = defaultdict(list) if documents else None # type: ignore
- for document in documents:
- metadata_filter_document_ids[document.dataset_id].append(document.id) # type: ignore
- return metadata_filter_document_ids, metadata_condition
- def _replace_metadata_filter_value(self, text: str, inputs: dict) -> str:
- def replacer(match):
- key = match.group(1)
- return str(inputs.get(key, f"{{{{{key}}}}}"))
- pattern = re.compile(r"\{\{(\w+)\}\}")
- return pattern.sub(replacer, text)
- def _automatic_metadata_filter_func(
- self, dataset_ids: list, query: str, tenant_id: str, user_id: str, metadata_model_config: ModelConfig
- ) -> Optional[list[dict[str, Any]]]:
- # get all metadata field
- metadata_fields = db.session.query(DatasetMetadata).filter(DatasetMetadata.dataset_id.in_(dataset_ids)).all()
- all_metadata_fields = [metadata_field.name for metadata_field in metadata_fields]
- # get metadata model config
- if metadata_model_config is None:
- raise ValueError("metadata_model_config is required")
- # get metadata model instance
- # fetch model config
- model_instance, model_config = self._fetch_model_config(tenant_id, metadata_model_config)
- # fetch prompt messages
- prompt_messages, stop = self._get_prompt_template(
- model_config=model_config,
- mode=metadata_model_config.mode,
- metadata_fields=all_metadata_fields,
- query=query or "",
- )
- result_text = ""
- try:
- # handle invoke result
- invoke_result = cast(
- Generator[LLMResult, None, None],
- model_instance.invoke_llm(
- prompt_messages=prompt_messages,
- model_parameters=model_config.parameters,
- stop=stop,
- stream=True,
- user=user_id,
- ),
- )
- # handle invoke result
- result_text, usage = self._handle_invoke_result(invoke_result=invoke_result)
- result_text_json = parse_and_check_json_markdown(result_text, [])
- automatic_metadata_filters = []
- if "metadata_map" in result_text_json:
- metadata_map = result_text_json["metadata_map"]
- for item in metadata_map:
- if item.get("metadata_field_name") in all_metadata_fields:
- automatic_metadata_filters.append(
- {
- "metadata_name": item.get("metadata_field_name"),
- "value": item.get("metadata_field_value"),
- "condition": item.get("comparison_operator"),
- }
- )
- except Exception as e:
- return None
- return automatic_metadata_filters
- def _process_metadata_filter_func(self, condition: str, metadata_name: str, value: Optional[Any], filters: list):
- match condition:
- case "contains":
- filters.append(
- (text("documents.doc_metadata ->> :key LIKE :value")).params(key=metadata_name, value=f"%{value}%")
- )
- case "not contains":
- filters.append(
- (text("documents.doc_metadata ->> :key NOT LIKE :value")).params(
- key=metadata_name, value=f"%{value}%"
- )
- )
- case "start with":
- filters.append(
- (text("documents.doc_metadata ->> :key LIKE :value")).params(key=metadata_name, value=f"{value}%")
- )
- case "end with":
- filters.append(
- (text("documents.doc_metadata ->> :key LIKE :value")).params(key=metadata_name, value=f"%{value}")
- )
- case "is" | "=":
- if isinstance(value, str):
- filters.append(DatasetDocument.doc_metadata[metadata_name] == f'"{value}"')
- else:
- filters.append(
- sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Integer) == value
- )
- case "is not" | "≠":
- if isinstance(value, str):
- filters.append(DatasetDocument.doc_metadata[metadata_name] != f'"{value}"')
- else:
- filters.append(
- sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Integer) != value
- )
- case "empty":
- filters.append(DatasetDocument.doc_metadata[metadata_name].is_(None))
- case "not empty":
- filters.append(DatasetDocument.doc_metadata[metadata_name].isnot(None))
- case "before" | "<":
- filters.append(sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Integer) < value)
- case "after" | ">":
- filters.append(sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Integer) > value)
- case "≤" | ">=":
- filters.append(sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Integer) <= value)
- case "≥" | ">=":
- filters.append(sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Integer) >= value)
- case _:
- pass
- return filters
- def _fetch_model_config(
- self, tenant_id: str, model: ModelConfig
- ) -> tuple[ModelInstance, ModelConfigWithCredentialsEntity]:
- """
- Fetch model config
- :param node_data: node data
- :return:
- """
- if model is None:
- raise ValueError("single_retrieval_config is required")
- model_name = model.name
- provider_name = model.provider
- model_manager = ModelManager()
- model_instance = model_manager.get_model_instance(
- tenant_id=tenant_id, model_type=ModelType.LLM, provider=provider_name, model=model_name
- )
- provider_model_bundle = model_instance.provider_model_bundle
- model_type_instance = model_instance.model_type_instance
- model_type_instance = cast(LargeLanguageModel, model_type_instance)
- model_credentials = model_instance.credentials
- # check model
- provider_model = provider_model_bundle.configuration.get_provider_model(
- model=model_name, model_type=ModelType.LLM
- )
- if provider_model is None:
- raise ValueError(f"Model {model_name} not exist.")
- if provider_model.status == ModelStatus.NO_CONFIGURE:
- raise ValueError(f"Model {model_name} credentials is not initialized.")
- elif provider_model.status == ModelStatus.NO_PERMISSION:
- raise ValueError(f"Dify Hosted OpenAI {model_name} currently not support.")
- elif provider_model.status == ModelStatus.QUOTA_EXCEEDED:
- raise ValueError(f"Model provider {provider_name} quota exceeded.")
- # model config
- completion_params = model.completion_params
- stop = []
- if "stop" in completion_params:
- stop = completion_params["stop"]
- del completion_params["stop"]
- # get model mode
- model_mode = model.mode
- if not model_mode:
- raise ValueError("LLM mode is required.")
- model_schema = model_type_instance.get_model_schema(model_name, model_credentials)
- if not model_schema:
- raise ValueError(f"Model {model_name} not exist.")
- return model_instance, ModelConfigWithCredentialsEntity(
- provider=provider_name,
- model=model_name,
- model_schema=model_schema,
- mode=model_mode,
- provider_model_bundle=provider_model_bundle,
- credentials=model_credentials,
- parameters=completion_params,
- stop=stop,
- )
- def _get_prompt_template(
- self, model_config: ModelConfigWithCredentialsEntity, mode: str, metadata_fields: list, query: str
- ):
- model_mode = ModelMode.value_of(mode)
- input_text = query
- prompt_template: Union[CompletionModelPromptTemplate, list[ChatModelMessage]]
- if model_mode == ModelMode.CHAT:
- prompt_template = []
- system_prompt_messages = ChatModelMessage(role=PromptMessageRole.SYSTEM, text=METADATA_FILTER_SYSTEM_PROMPT)
- prompt_template.append(system_prompt_messages)
- user_prompt_message_1 = ChatModelMessage(role=PromptMessageRole.USER, text=METADATA_FILTER_USER_PROMPT_1)
- prompt_template.append(user_prompt_message_1)
- assistant_prompt_message_1 = ChatModelMessage(
- role=PromptMessageRole.ASSISTANT, text=METADATA_FILTER_ASSISTANT_PROMPT_1
- )
- prompt_template.append(assistant_prompt_message_1)
- user_prompt_message_2 = ChatModelMessage(role=PromptMessageRole.USER, text=METADATA_FILTER_USER_PROMPT_2)
- prompt_template.append(user_prompt_message_2)
- assistant_prompt_message_2 = ChatModelMessage(
- role=PromptMessageRole.ASSISTANT, text=METADATA_FILTER_ASSISTANT_PROMPT_2
- )
- prompt_template.append(assistant_prompt_message_2)
- user_prompt_message_3 = ChatModelMessage(
- role=PromptMessageRole.USER,
- text=METADATA_FILTER_USER_PROMPT_3.format(
- input_text=input_text,
- metadata_fields=json.dumps(metadata_fields, ensure_ascii=False),
- ),
- )
- prompt_template.append(user_prompt_message_3)
- elif model_mode == ModelMode.COMPLETION:
- prompt_template = CompletionModelPromptTemplate(
- text=METADATA_FILTER_COMPLETION_PROMPT.format(
- input_text=input_text,
- metadata_fields=json.dumps(metadata_fields, ensure_ascii=False),
- )
- )
- else:
- raise ValueError(f"Model mode {model_mode} not support.")
- prompt_transform = AdvancedPromptTransform()
- prompt_messages = prompt_transform.get_prompt(
- prompt_template=prompt_template,
- inputs={},
- query=query or "",
- files=[],
- context=None,
- memory_config=None,
- memory=None,
- model_config=model_config,
- )
- stop = model_config.stop
- return prompt_messages, stop
- def _handle_invoke_result(self, invoke_result: Generator) -> tuple[str, LLMUsage]:
- """
- Handle invoke result
- :param invoke_result: invoke result
- :return:
- """
- model = None
- prompt_messages: list[PromptMessage] = []
- full_text = ""
- usage = None
- for result in invoke_result:
- text = result.delta.message.content
- full_text += text
- if not model:
- model = result.model
- if not prompt_messages:
- prompt_messages = result.prompt_messages
- if not usage and result.delta.usage:
- usage = result.delta.usage
- if not usage:
- usage = LLMUsage.empty_usage()
- return full_text, usage
|