node.py 3.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117
  1. from core.plugin.backwards_invocation.base import BaseBackwardsInvocation
  2. from core.workflow.nodes.enums import NodeType
  3. from core.workflow.nodes.parameter_extractor.entities import (
  4. ModelConfig as ParameterExtractorModelConfig,
  5. )
  6. from core.workflow.nodes.parameter_extractor.entities import (
  7. ParameterConfig,
  8. ParameterExtractorNodeData,
  9. )
  10. from core.workflow.nodes.question_classifier.entities import (
  11. ClassConfig,
  12. QuestionClassifierNodeData,
  13. )
  14. from core.workflow.nodes.question_classifier.entities import (
  15. ModelConfig as QuestionClassifierModelConfig,
  16. )
  17. from services.workflow_service import WorkflowService
  18. class PluginNodeBackwardsInvocation(BaseBackwardsInvocation):
  19. @classmethod
  20. def invoke_parameter_extractor(
  21. cls,
  22. tenant_id: str,
  23. user_id: str,
  24. parameters: list[ParameterConfig],
  25. model_config: ParameterExtractorModelConfig,
  26. instruction: str,
  27. query: str,
  28. ) -> dict:
  29. """
  30. Invoke parameter extractor node.
  31. :param tenant_id: str
  32. :param user_id: str
  33. :param parameters: list[ParameterConfig]
  34. :param model_config: ModelConfig
  35. :param instruction: str
  36. :param query: str
  37. :return: dict
  38. """
  39. workflow_service = WorkflowService()
  40. node_id = "1919810"
  41. node_data = ParameterExtractorNodeData(
  42. title="parameter_extractor",
  43. desc="parameter_extractor",
  44. parameters=parameters,
  45. reasoning_mode="function_call",
  46. query=[node_id, "query"],
  47. model=model_config,
  48. instruction=instruction, # instruct with variables are not supported
  49. )
  50. node_data_dict = node_data.model_dump()
  51. node_data_dict["type"] = NodeType.PARAMETER_EXTRACTOR.value
  52. execution = workflow_service.run_free_workflow_node(
  53. node_data_dict,
  54. tenant_id=tenant_id,
  55. user_id=user_id,
  56. node_id=node_id,
  57. user_inputs={
  58. f"{node_id}.query": query,
  59. },
  60. )
  61. return {
  62. "inputs": execution.inputs_dict,
  63. "outputs": execution.outputs_dict,
  64. "process_data": execution.process_data_dict,
  65. }
  66. @classmethod
  67. def invoke_question_classifier(
  68. cls,
  69. tenant_id: str,
  70. user_id: str,
  71. model_config: QuestionClassifierModelConfig,
  72. classes: list[ClassConfig],
  73. instruction: str,
  74. query: str,
  75. ) -> dict:
  76. """
  77. Invoke question classifier node.
  78. :param tenant_id: str
  79. :param user_id: str
  80. :param model_config: ModelConfig
  81. :param classes: list[ClassConfig]
  82. :param instruction: str
  83. :param query: str
  84. :return: dict
  85. """
  86. workflow_service = WorkflowService()
  87. node_id = "1919810"
  88. node_data = QuestionClassifierNodeData(
  89. title="question_classifier",
  90. desc="question_classifier",
  91. query_variable_selector=[node_id, "query"],
  92. model=model_config,
  93. classes=classes,
  94. instruction=instruction, # instruct with variables are not supported
  95. )
  96. node_data_dict = node_data.model_dump()
  97. execution = workflow_service.run_free_workflow_node(
  98. node_data_dict,
  99. tenant_id=tenant_id,
  100. user_id=user_id,
  101. node_id=node_id,
  102. user_inputs={
  103. f"{node_id}.query": query,
  104. },
  105. )
  106. return {
  107. "inputs": execution.inputs_dict,
  108. "outputs": execution.outputs_dict,
  109. "process_data": execution.process_data_dict,
  110. }