cot_agent_runner.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425
  1. import json
  2. from abc import ABC, abstractmethod
  3. from collections.abc import Generator, Mapping, Sequence
  4. from typing import Any, Optional
  5. from core.agent.base_agent_runner import BaseAgentRunner
  6. from core.agent.entities import AgentScratchpadUnit
  7. from core.agent.output_parser.cot_output_parser import CotAgentOutputParser
  8. from core.app.apps.base_app_queue_manager import PublishFrom
  9. from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
  10. from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
  11. from core.model_runtime.entities.message_entities import (
  12. AssistantPromptMessage,
  13. PromptMessage,
  14. PromptMessageTool,
  15. ToolPromptMessage,
  16. UserPromptMessage,
  17. )
  18. from core.ops.ops_trace_manager import TraceQueueManager
  19. from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
  20. from core.tools.__base.tool import Tool
  21. from core.tools.entities.tool_entities import ToolInvokeMeta
  22. from core.tools.tool_engine import ToolEngine
  23. from models.model import Message
  24. class CotAgentRunner(BaseAgentRunner, ABC):
  25. _is_first_iteration = True
  26. _ignore_observation_providers = ["wenxin"]
  27. _historic_prompt_messages: list[PromptMessage]
  28. _agent_scratchpad: list[AgentScratchpadUnit]
  29. _instruction: str
  30. _query: str
  31. _prompt_messages_tools: Sequence[PromptMessageTool]
  32. def run(
  33. self,
  34. message: Message,
  35. query: str,
  36. inputs: Mapping[str, str],
  37. ) -> Generator:
  38. """
  39. Run Cot agent application
  40. """
  41. app_generate_entity = self.application_generate_entity
  42. self._repack_app_generate_entity(app_generate_entity)
  43. self._init_react_state(query)
  44. trace_manager = app_generate_entity.trace_manager
  45. # check model mode
  46. if "Observation" not in app_generate_entity.model_conf.stop:
  47. if app_generate_entity.model_conf.provider not in self._ignore_observation_providers:
  48. app_generate_entity.model_conf.stop.append("Observation")
  49. app_config = self.app_config
  50. assert app_config.agent
  51. # init instruction
  52. inputs = inputs or {}
  53. instruction = app_config.prompt_template.simple_prompt_template or ""
  54. self._instruction = self._fill_in_inputs_from_external_data_tools(instruction, inputs)
  55. iteration_step = 1
  56. max_iteration_steps = min(app_config.agent.max_iteration if app_config.agent else 5, 5) + 1
  57. # convert tools into ModelRuntime Tool format
  58. tool_instances, prompt_messages_tools = self._init_prompt_tools()
  59. self._prompt_messages_tools = prompt_messages_tools
  60. function_call_state = True
  61. llm_usage: dict[str, Optional[LLMUsage]] = {"usage": None}
  62. final_answer = ""
  63. def increase_usage(final_llm_usage_dict: dict[str, Optional[LLMUsage]], usage: LLMUsage):
  64. if not final_llm_usage_dict["usage"]:
  65. final_llm_usage_dict["usage"] = usage
  66. else:
  67. llm_usage = final_llm_usage_dict["usage"]
  68. llm_usage.prompt_tokens += usage.prompt_tokens
  69. llm_usage.completion_tokens += usage.completion_tokens
  70. llm_usage.prompt_price += usage.prompt_price
  71. llm_usage.completion_price += usage.completion_price
  72. llm_usage.total_price += usage.total_price
  73. model_instance = self.model_instance
  74. while function_call_state and iteration_step <= max_iteration_steps:
  75. # continue to run until there is not any tool call
  76. function_call_state = False
  77. if iteration_step == max_iteration_steps:
  78. # the last iteration, remove all tools
  79. self._prompt_messages_tools = []
  80. message_file_ids: list[str] = []
  81. agent_thought = self.create_agent_thought(
  82. message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
  83. )
  84. if iteration_step > 1:
  85. self.queue_manager.publish(
  86. QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
  87. )
  88. # recalc llm max tokens
  89. prompt_messages = self._organize_prompt_messages()
  90. self.recalc_llm_max_tokens(self.model_config, prompt_messages)
  91. # invoke model
  92. chunks = model_instance.invoke_llm(
  93. prompt_messages=prompt_messages,
  94. model_parameters=app_generate_entity.model_conf.parameters,
  95. tools=[],
  96. stop=app_generate_entity.model_conf.stop,
  97. stream=True,
  98. user=self.user_id,
  99. callbacks=[],
  100. )
  101. usage_dict: dict[str, Optional[LLMUsage]] = {}
  102. react_chunks = CotAgentOutputParser.handle_react_stream_output(chunks, usage_dict)
  103. scratchpad = AgentScratchpadUnit(
  104. agent_response="",
  105. thought="",
  106. action_str="",
  107. observation="",
  108. action=None,
  109. )
  110. # publish agent thought if it's first iteration
  111. if iteration_step == 1:
  112. self.queue_manager.publish(
  113. QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
  114. )
  115. for chunk in react_chunks:
  116. if isinstance(chunk, AgentScratchpadUnit.Action):
  117. action = chunk
  118. # detect action
  119. assert scratchpad.agent_response is not None
  120. scratchpad.agent_response += json.dumps(chunk.model_dump())
  121. scratchpad.action_str = json.dumps(chunk.model_dump())
  122. scratchpad.action = action
  123. else:
  124. assert scratchpad.agent_response is not None
  125. scratchpad.agent_response += chunk
  126. assert scratchpad.thought is not None
  127. scratchpad.thought += chunk
  128. yield LLMResultChunk(
  129. model=self.model_config.model,
  130. prompt_messages=prompt_messages,
  131. system_fingerprint="",
  132. delta=LLMResultChunkDelta(index=0, message=AssistantPromptMessage(content=chunk), usage=None),
  133. )
  134. assert scratchpad.thought is not None
  135. scratchpad.thought = scratchpad.thought.strip() or "I am thinking about how to help you"
  136. self._agent_scratchpad.append(scratchpad)
  137. # get llm usage
  138. if "usage" in usage_dict:
  139. if usage_dict["usage"] is not None:
  140. increase_usage(llm_usage, usage_dict["usage"])
  141. else:
  142. usage_dict["usage"] = LLMUsage.empty_usage()
  143. self.save_agent_thought(
  144. agent_thought=agent_thought,
  145. tool_name=(scratchpad.action.action_name if scratchpad.action and not scratchpad.is_final() else ""),
  146. tool_input={scratchpad.action.action_name: scratchpad.action.action_input} if scratchpad.action else {},
  147. tool_invoke_meta={},
  148. thought=scratchpad.thought or "",
  149. observation="",
  150. answer=scratchpad.agent_response or "",
  151. messages_ids=[],
  152. llm_usage=usage_dict["usage"],
  153. )
  154. if not scratchpad.is_final():
  155. self.queue_manager.publish(
  156. QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
  157. )
  158. if not scratchpad.action:
  159. # failed to extract action, return final answer directly
  160. final_answer = ""
  161. else:
  162. if scratchpad.action.action_name.lower() == "final answer":
  163. # action is final answer, return final answer directly
  164. try:
  165. if isinstance(scratchpad.action.action_input, dict):
  166. final_answer = json.dumps(scratchpad.action.action_input)
  167. elif isinstance(scratchpad.action.action_input, str):
  168. final_answer = scratchpad.action.action_input
  169. else:
  170. final_answer = f"{scratchpad.action.action_input}"
  171. except json.JSONDecodeError:
  172. final_answer = f"{scratchpad.action.action_input}"
  173. else:
  174. function_call_state = True
  175. # action is tool call, invoke tool
  176. tool_invoke_response, tool_invoke_meta = self._handle_invoke_action(
  177. action=scratchpad.action,
  178. tool_instances=tool_instances,
  179. message_file_ids=message_file_ids,
  180. trace_manager=trace_manager,
  181. )
  182. scratchpad.observation = tool_invoke_response
  183. scratchpad.agent_response = tool_invoke_response
  184. self.save_agent_thought(
  185. agent_thought=agent_thought,
  186. tool_name=scratchpad.action.action_name,
  187. tool_input={scratchpad.action.action_name: scratchpad.action.action_input},
  188. thought=scratchpad.thought or "",
  189. observation={scratchpad.action.action_name: tool_invoke_response},
  190. tool_invoke_meta={scratchpad.action.action_name: tool_invoke_meta.to_dict()},
  191. answer=scratchpad.agent_response,
  192. messages_ids=message_file_ids,
  193. llm_usage=usage_dict["usage"],
  194. )
  195. self.queue_manager.publish(
  196. QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
  197. )
  198. # update prompt tool message
  199. for prompt_tool in self._prompt_messages_tools:
  200. self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
  201. iteration_step += 1
  202. yield LLMResultChunk(
  203. model=model_instance.model,
  204. prompt_messages=prompt_messages,
  205. delta=LLMResultChunkDelta(
  206. index=0, message=AssistantPromptMessage(content=final_answer), usage=llm_usage["usage"]
  207. ),
  208. system_fingerprint="",
  209. )
  210. # save agent thought
  211. self.save_agent_thought(
  212. agent_thought=agent_thought,
  213. tool_name="",
  214. tool_input={},
  215. tool_invoke_meta={},
  216. thought=final_answer,
  217. observation={},
  218. answer=final_answer,
  219. messages_ids=[],
  220. )
  221. # publish end event
  222. self.queue_manager.publish(
  223. QueueMessageEndEvent(
  224. llm_result=LLMResult(
  225. model=model_instance.model,
  226. prompt_messages=prompt_messages,
  227. message=AssistantPromptMessage(content=final_answer),
  228. usage=llm_usage["usage"] or LLMUsage.empty_usage(),
  229. system_fingerprint="",
  230. )
  231. ),
  232. PublishFrom.APPLICATION_MANAGER,
  233. )
  234. def _handle_invoke_action(
  235. self,
  236. action: AgentScratchpadUnit.Action,
  237. tool_instances: Mapping[str, Tool],
  238. message_file_ids: list[str],
  239. trace_manager: Optional[TraceQueueManager] = None,
  240. ) -> tuple[str, ToolInvokeMeta]:
  241. """
  242. handle invoke action
  243. :param action: action
  244. :param tool_instances: tool instances
  245. :param message_file_ids: message file ids
  246. :param trace_manager: trace manager
  247. :return: observation, meta
  248. """
  249. # action is tool call, invoke tool
  250. tool_call_name = action.action_name
  251. tool_call_args = action.action_input
  252. tool_instance = tool_instances.get(tool_call_name)
  253. if not tool_instance:
  254. answer = f"there is not a tool named {tool_call_name}"
  255. return answer, ToolInvokeMeta.error_instance(answer)
  256. if isinstance(tool_call_args, str):
  257. try:
  258. tool_call_args = json.loads(tool_call_args)
  259. except json.JSONDecodeError:
  260. pass
  261. # invoke tool
  262. tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
  263. tool=tool_instance,
  264. tool_parameters=tool_call_args,
  265. user_id=self.user_id,
  266. tenant_id=self.tenant_id,
  267. message=self.message,
  268. invoke_from=self.application_generate_entity.invoke_from,
  269. agent_tool_callback=self.agent_callback,
  270. trace_manager=trace_manager,
  271. )
  272. # publish files
  273. for message_file_id in message_files:
  274. # publish message file
  275. self.queue_manager.publish(
  276. QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
  277. )
  278. # add message file ids
  279. message_file_ids.append(message_file_id)
  280. return tool_invoke_response, tool_invoke_meta
  281. def _convert_dict_to_action(self, action: dict) -> AgentScratchpadUnit.Action:
  282. """
  283. convert dict to action
  284. """
  285. return AgentScratchpadUnit.Action(action_name=action["action"], action_input=action["action_input"])
  286. def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: Mapping[str, Any]) -> str:
  287. """
  288. fill in inputs from external data tools
  289. """
  290. for key, value in inputs.items():
  291. try:
  292. instruction = instruction.replace(f"{{{{{key}}}}}", str(value))
  293. except Exception:
  294. continue
  295. return instruction
  296. def _init_react_state(self, query) -> None:
  297. """
  298. init agent scratchpad
  299. """
  300. self._query = query
  301. self._agent_scratchpad = []
  302. self._historic_prompt_messages = self._organize_historic_prompt_messages()
  303. @abstractmethod
  304. def _organize_prompt_messages(self) -> list[PromptMessage]:
  305. """
  306. organize prompt messages
  307. """
  308. def _format_assistant_message(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str:
  309. """
  310. format assistant message
  311. """
  312. message = ""
  313. for scratchpad in agent_scratchpad:
  314. if scratchpad.is_final():
  315. message += f"Final Answer: {scratchpad.agent_response}"
  316. else:
  317. message += f"Thought: {scratchpad.thought}\n\n"
  318. if scratchpad.action_str:
  319. message += f"Action: {scratchpad.action_str}\n\n"
  320. if scratchpad.observation:
  321. message += f"Observation: {scratchpad.observation}\n\n"
  322. return message
  323. def _organize_historic_prompt_messages(
  324. self, current_session_messages: list[PromptMessage] | None = None
  325. ) -> list[PromptMessage]:
  326. """
  327. organize historic prompt messages
  328. """
  329. result: list[PromptMessage] = []
  330. scratchpads: list[AgentScratchpadUnit] = []
  331. current_scratchpad: AgentScratchpadUnit | None = None
  332. for message in self.history_prompt_messages:
  333. if isinstance(message, AssistantPromptMessage):
  334. if not current_scratchpad:
  335. assert isinstance(message.content, str)
  336. current_scratchpad = AgentScratchpadUnit(
  337. agent_response=message.content,
  338. thought=message.content or "I am thinking about how to help you",
  339. action_str="",
  340. action=None,
  341. observation=None,
  342. )
  343. scratchpads.append(current_scratchpad)
  344. if message.tool_calls:
  345. try:
  346. current_scratchpad.action = AgentScratchpadUnit.Action(
  347. action_name=message.tool_calls[0].function.name,
  348. action_input=json.loads(message.tool_calls[0].function.arguments),
  349. )
  350. current_scratchpad.action_str = json.dumps(current_scratchpad.action.to_dict())
  351. except:
  352. pass
  353. elif isinstance(message, ToolPromptMessage):
  354. if current_scratchpad:
  355. assert isinstance(message.content, str)
  356. current_scratchpad.observation = message.content
  357. else:
  358. raise NotImplementedError("expected str type")
  359. elif isinstance(message, UserPromptMessage):
  360. if scratchpads:
  361. result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
  362. scratchpads = []
  363. current_scratchpad = None
  364. result.append(message)
  365. if scratchpads:
  366. result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
  367. historic_prompts = AgentHistoryPromptTransform(
  368. model_config=self.model_config,
  369. prompt_messages=current_session_messages or [],
  370. history_messages=result,
  371. memory=self.memory,
  372. ).get_prompt()
  373. return historic_prompts