dataset_retrieval.py 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732
  1. import math
  2. import threading
  3. from collections import Counter
  4. from typing import Any, Optional, cast
  5. from flask import Flask, current_app
  6. from core.app.app_config.entities import DatasetEntity, DatasetRetrieveConfigEntity
  7. from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
  8. from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
  9. from core.entities.agent_entities import PlanningStrategy
  10. from core.memory.token_buffer_memory import TokenBufferMemory
  11. from core.model_manager import ModelInstance, ModelManager
  12. from core.model_runtime.entities.message_entities import PromptMessageTool
  13. from core.model_runtime.entities.model_entities import ModelFeature, ModelType
  14. from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
  15. from core.ops.entities.trace_entity import TraceTaskName
  16. from core.ops.ops_trace_manager import TraceQueueManager, TraceTask
  17. from core.ops.utils import measure_time
  18. from core.rag.data_post_processor.data_post_processor import DataPostProcessor
  19. from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaKeywordTableHandler
  20. from core.rag.datasource.retrieval_service import RetrievalService
  21. from core.rag.entities.context_entities import DocumentContext
  22. from core.rag.index_processor.constant.index_type import IndexType
  23. from core.rag.models.document import Document
  24. from core.rag.rerank.rerank_type import RerankMode
  25. from core.rag.retrieval.retrieval_methods import RetrievalMethod
  26. from core.rag.retrieval.router.multi_dataset_function_call_router import FunctionCallMultiDatasetRouter
  27. from core.rag.retrieval.router.multi_dataset_react_route import ReactMultiDatasetRouter
  28. from core.tools.utils.dataset_retriever.dataset_retriever_base_tool import DatasetRetrieverBaseTool
  29. from extensions.ext_database import db
  30. from models.dataset import ChildChunk, Dataset, DatasetQuery, DocumentSegment
  31. from models.dataset import Document as DatasetDocument
  32. from services.external_knowledge_service import ExternalDatasetService
  33. default_retrieval_model: dict[str, Any] = {
  34. "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
  35. "reranking_enable": False,
  36. "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
  37. "top_k": 2,
  38. "score_threshold_enabled": False,
  39. }
  40. class DatasetRetrieval:
  41. def __init__(self, application_generate_entity=None):
  42. self.application_generate_entity = application_generate_entity
  43. def retrieve(
  44. self,
  45. app_id: str,
  46. user_id: str,
  47. tenant_id: str,
  48. model_config: ModelConfigWithCredentialsEntity,
  49. config: DatasetEntity,
  50. query: str,
  51. invoke_from: InvokeFrom,
  52. show_retrieve_source: bool,
  53. hit_callback: DatasetIndexToolCallbackHandler,
  54. message_id: str,
  55. memory: Optional[TokenBufferMemory] = None,
  56. ) -> Optional[str]:
  57. """
  58. Retrieve dataset.
  59. :param app_id: app_id
  60. :param user_id: user_id
  61. :param tenant_id: tenant id
  62. :param model_config: model config
  63. :param config: dataset config
  64. :param query: query
  65. :param invoke_from: invoke from
  66. :param show_retrieve_source: show retrieve source
  67. :param hit_callback: hit callback
  68. :param message_id: message id
  69. :param memory: memory
  70. :return:
  71. """
  72. dataset_ids = config.dataset_ids
  73. if len(dataset_ids) == 0:
  74. return None
  75. retrieve_config = config.retrieve_config
  76. # check model is support tool calling
  77. model_type_instance = model_config.provider_model_bundle.model_type_instance
  78. model_type_instance = cast(LargeLanguageModel, model_type_instance)
  79. model_manager = ModelManager()
  80. model_instance = model_manager.get_model_instance(
  81. tenant_id=tenant_id, model_type=ModelType.LLM, provider=model_config.provider, model=model_config.model
  82. )
  83. # get model schema
  84. model_schema = model_type_instance.get_model_schema(
  85. model=model_config.model, credentials=model_config.credentials
  86. )
  87. if not model_schema:
  88. return None
  89. planning_strategy = PlanningStrategy.REACT_ROUTER
  90. features = model_schema.features
  91. if features:
  92. if ModelFeature.TOOL_CALL in features or ModelFeature.MULTI_TOOL_CALL in features:
  93. planning_strategy = PlanningStrategy.ROUTER
  94. available_datasets = []
  95. for dataset_id in dataset_ids:
  96. # get dataset from dataset id
  97. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  98. # pass if dataset is not available
  99. if not dataset:
  100. continue
  101. # pass if dataset is not available
  102. if dataset and dataset.available_document_count == 0 and dataset.provider != "external":
  103. continue
  104. available_datasets.append(dataset)
  105. all_documents = []
  106. user_from = "account" if invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER} else "end_user"
  107. if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
  108. all_documents = self.single_retrieve(
  109. app_id,
  110. tenant_id,
  111. user_id,
  112. user_from,
  113. available_datasets,
  114. query,
  115. model_instance,
  116. model_config,
  117. planning_strategy,
  118. message_id,
  119. )
  120. elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
  121. all_documents = self.multiple_retrieve(
  122. app_id,
  123. tenant_id,
  124. user_id,
  125. user_from,
  126. available_datasets,
  127. query,
  128. retrieve_config.top_k or 0,
  129. retrieve_config.score_threshold or 0,
  130. retrieve_config.rerank_mode or "reranking_model",
  131. retrieve_config.reranking_model,
  132. retrieve_config.weights,
  133. retrieve_config.reranking_enabled or True,
  134. message_id,
  135. )
  136. dify_documents = [item for item in all_documents if item.provider == "dify"]
  137. external_documents = [item for item in all_documents if item.provider == "external"]
  138. document_context_list = []
  139. retrieval_resource_list = []
  140. # deal with external documents
  141. for item in external_documents:
  142. document_context_list.append(DocumentContext(content=item.page_content, score=item.metadata.get("score")))
  143. source = {
  144. "dataset_id": item.metadata.get("dataset_id"),
  145. "dataset_name": item.metadata.get("dataset_name"),
  146. "document_name": item.metadata.get("title"),
  147. "data_source_type": "external",
  148. "retriever_from": invoke_from.to_source(),
  149. "score": item.metadata.get("score"),
  150. "content": item.page_content,
  151. }
  152. retrieval_resource_list.append(source)
  153. # deal with dify documents
  154. if dify_documents:
  155. records = RetrievalService.format_retrieval_documents(dify_documents)
  156. if records:
  157. for record in records:
  158. segment = record.segment
  159. if segment.answer:
  160. document_context_list.append(
  161. DocumentContext(
  162. content=f"question:{segment.get_sign_content()} answer:{segment.answer}",
  163. score=record.score,
  164. )
  165. )
  166. else:
  167. document_context_list.append(
  168. DocumentContext(
  169. content=segment.get_sign_content(),
  170. score=record.score,
  171. )
  172. )
  173. if show_retrieve_source:
  174. for record in records:
  175. segment = record.segment
  176. dataset = Dataset.query.filter_by(id=segment.dataset_id).first()
  177. document = DatasetDocument.query.filter(
  178. DatasetDocument.id == segment.document_id,
  179. DatasetDocument.enabled == True,
  180. DatasetDocument.archived == False,
  181. ).first()
  182. if dataset and document:
  183. source = {
  184. "dataset_id": dataset.id,
  185. "dataset_name": dataset.name,
  186. "document_id": document.id,
  187. "document_name": document.name,
  188. "data_source_type": document.data_source_type,
  189. "segment_id": segment.id,
  190. "retriever_from": invoke_from.to_source(),
  191. "score": record.score or 0.0,
  192. "doc_metadata": document.doc_metadata,
  193. }
  194. if invoke_from.to_source() == "dev":
  195. source["hit_count"] = segment.hit_count
  196. source["word_count"] = segment.word_count
  197. source["segment_position"] = segment.position
  198. source["index_node_hash"] = segment.index_node_hash
  199. if segment.answer:
  200. source["content"] = f"question:{segment.content} \nanswer:{segment.answer}"
  201. else:
  202. source["content"] = segment.content
  203. retrieval_resource_list.append(source)
  204. if hit_callback and retrieval_resource_list:
  205. retrieval_resource_list = sorted(retrieval_resource_list, key=lambda x: x.get("score") or 0.0, reverse=True)
  206. for position, item in enumerate(retrieval_resource_list, start=1):
  207. item["position"] = position
  208. hit_callback.return_retriever_resource_info(retrieval_resource_list)
  209. if document_context_list:
  210. document_context_list = sorted(document_context_list, key=lambda x: x.score or 0.0, reverse=True)
  211. return str("\n".join([document_context.content for document_context in document_context_list]))
  212. return ""
  213. def single_retrieve(
  214. self,
  215. app_id: str,
  216. tenant_id: str,
  217. user_id: str,
  218. user_from: str,
  219. available_datasets: list,
  220. query: str,
  221. model_instance: ModelInstance,
  222. model_config: ModelConfigWithCredentialsEntity,
  223. planning_strategy: PlanningStrategy,
  224. message_id: Optional[str] = None,
  225. ):
  226. tools = []
  227. for dataset in available_datasets:
  228. description = dataset.description
  229. if not description:
  230. description = "useful for when you want to answer queries about the " + dataset.name
  231. description = description.replace("\n", "").replace("\r", "")
  232. message_tool = PromptMessageTool(
  233. name=dataset.id,
  234. description=description,
  235. parameters={
  236. "type": "object",
  237. "properties": {},
  238. "required": [],
  239. },
  240. )
  241. tools.append(message_tool)
  242. dataset_id = None
  243. if planning_strategy == PlanningStrategy.REACT_ROUTER:
  244. react_multi_dataset_router = ReactMultiDatasetRouter()
  245. dataset_id = react_multi_dataset_router.invoke(
  246. query, tools, model_config, model_instance, user_id, tenant_id
  247. )
  248. elif planning_strategy == PlanningStrategy.ROUTER:
  249. function_call_router = FunctionCallMultiDatasetRouter()
  250. dataset_id = function_call_router.invoke(query, tools, model_config, model_instance)
  251. if dataset_id:
  252. # get retrieval model config
  253. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  254. if dataset:
  255. results = []
  256. if dataset.provider == "external":
  257. external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
  258. tenant_id=dataset.tenant_id,
  259. dataset_id=dataset_id,
  260. query=query,
  261. external_retrieval_parameters=dataset.retrieval_model,
  262. )
  263. for external_document in external_documents:
  264. document = Document(
  265. page_content=external_document.get("content"),
  266. metadata=external_document.get("metadata"),
  267. provider="external",
  268. )
  269. if document.metadata is not None:
  270. document.metadata["score"] = external_document.get("score")
  271. document.metadata["title"] = external_document.get("title")
  272. document.metadata["dataset_id"] = dataset_id
  273. document.metadata["dataset_name"] = dataset.name
  274. results.append(document)
  275. else:
  276. retrieval_model_config = dataset.retrieval_model or default_retrieval_model
  277. # get top k
  278. top_k = retrieval_model_config["top_k"]
  279. # get retrieval method
  280. if dataset.indexing_technique == "economy":
  281. retrieval_method = "keyword_search"
  282. else:
  283. retrieval_method = retrieval_model_config["search_method"]
  284. # get reranking model
  285. reranking_model = (
  286. retrieval_model_config["reranking_model"]
  287. if retrieval_model_config["reranking_enable"]
  288. else None
  289. )
  290. # get score threshold
  291. score_threshold = 0.0
  292. score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
  293. if score_threshold_enabled:
  294. score_threshold = retrieval_model_config.get("score_threshold", 0.0)
  295. with measure_time() as timer:
  296. results = RetrievalService.retrieve(
  297. retrieval_method=retrieval_method,
  298. dataset_id=dataset.id,
  299. query=query,
  300. top_k=top_k,
  301. score_threshold=score_threshold,
  302. reranking_model=reranking_model,
  303. reranking_mode=retrieval_model_config.get("reranking_mode", "reranking_model"),
  304. weights=retrieval_model_config.get("weights", None),
  305. )
  306. self._on_query(query, [dataset_id], app_id, user_from, user_id)
  307. if results:
  308. self._on_retrieval_end(results, message_id, timer)
  309. return results
  310. return []
  311. def multiple_retrieve(
  312. self,
  313. app_id: str,
  314. tenant_id: str,
  315. user_id: str,
  316. user_from: str,
  317. available_datasets: list,
  318. query: str,
  319. top_k: int,
  320. score_threshold: float,
  321. reranking_mode: str,
  322. reranking_model: Optional[dict] = None,
  323. weights: Optional[dict[str, Any]] = None,
  324. reranking_enable: bool = True,
  325. message_id: Optional[str] = None,
  326. ):
  327. if not available_datasets:
  328. return []
  329. threads = []
  330. all_documents: list[Document] = []
  331. dataset_ids = [dataset.id for dataset in available_datasets]
  332. index_type_check = all(
  333. item.indexing_technique == available_datasets[0].indexing_technique for item in available_datasets
  334. )
  335. if not index_type_check and (not reranking_enable or reranking_mode != RerankMode.RERANKING_MODEL):
  336. raise ValueError(
  337. "The configured knowledge base list have different indexing technique, please set reranking model."
  338. )
  339. index_type = available_datasets[0].indexing_technique
  340. if index_type == "high_quality":
  341. embedding_model_check = all(
  342. item.embedding_model == available_datasets[0].embedding_model for item in available_datasets
  343. )
  344. embedding_model_provider_check = all(
  345. item.embedding_model_provider == available_datasets[0].embedding_model_provider
  346. for item in available_datasets
  347. )
  348. if (
  349. reranking_enable
  350. and reranking_mode == "weighted_score"
  351. and (not embedding_model_check or not embedding_model_provider_check)
  352. ):
  353. raise ValueError(
  354. "The configured knowledge base list have different embedding model, please set reranking model."
  355. )
  356. if reranking_enable and reranking_mode == RerankMode.WEIGHTED_SCORE:
  357. if weights is not None:
  358. weights["vector_setting"]["embedding_provider_name"] = available_datasets[
  359. 0
  360. ].embedding_model_provider
  361. weights["vector_setting"]["embedding_model_name"] = available_datasets[0].embedding_model
  362. for dataset in available_datasets:
  363. index_type = dataset.indexing_technique
  364. retrieval_thread = threading.Thread(
  365. target=self._retriever,
  366. kwargs={
  367. "flask_app": current_app._get_current_object(), # type: ignore
  368. "dataset_id": dataset.id,
  369. "query": query,
  370. "top_k": top_k,
  371. "all_documents": all_documents,
  372. },
  373. )
  374. threads.append(retrieval_thread)
  375. retrieval_thread.start()
  376. for thread in threads:
  377. thread.join()
  378. with measure_time() as timer:
  379. if reranking_enable:
  380. # do rerank for searched documents
  381. data_post_processor = DataPostProcessor(tenant_id, reranking_mode, reranking_model, weights, False)
  382. all_documents = data_post_processor.invoke(
  383. query=query, documents=all_documents, score_threshold=score_threshold, top_n=top_k
  384. )
  385. else:
  386. if index_type == "economy":
  387. all_documents = self.calculate_keyword_score(query, all_documents, top_k)
  388. elif index_type == "high_quality":
  389. all_documents = self.calculate_vector_score(all_documents, top_k, score_threshold)
  390. self._on_query(query, dataset_ids, app_id, user_from, user_id)
  391. if all_documents:
  392. self._on_retrieval_end(all_documents, message_id, timer)
  393. return all_documents
  394. def _on_retrieval_end(
  395. self, documents: list[Document], message_id: Optional[str] = None, timer: Optional[dict] = None
  396. ) -> None:
  397. """Handle retrieval end."""
  398. dify_documents = [document for document in documents if document.provider == "dify"]
  399. for document in dify_documents:
  400. if document.metadata is not None:
  401. dataset_document = DatasetDocument.query.filter(
  402. DatasetDocument.id == document.metadata["document_id"]
  403. ).first()
  404. if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
  405. child_chunk = ChildChunk.query.filter(
  406. ChildChunk.index_node_id == document.metadata["doc_id"],
  407. ChildChunk.dataset_id == dataset_document.dataset_id,
  408. ChildChunk.document_id == dataset_document.id,
  409. ).first()
  410. if child_chunk:
  411. segment = DocumentSegment.query.filter(DocumentSegment.id == child_chunk.segment_id).update(
  412. {DocumentSegment.hit_count: DocumentSegment.hit_count + 1}, synchronize_session=False
  413. )
  414. db.session.commit()
  415. else:
  416. query = db.session.query(DocumentSegment).filter(
  417. DocumentSegment.index_node_id == document.metadata["doc_id"]
  418. )
  419. # if 'dataset_id' in document.metadata:
  420. if "dataset_id" in document.metadata:
  421. query = query.filter(DocumentSegment.dataset_id == document.metadata["dataset_id"])
  422. # add hit count to document segment
  423. query.update({DocumentSegment.hit_count: DocumentSegment.hit_count + 1}, synchronize_session=False)
  424. db.session.commit()
  425. # get tracing instance
  426. trace_manager: TraceQueueManager | None = (
  427. self.application_generate_entity.trace_manager if self.application_generate_entity else None
  428. )
  429. if trace_manager:
  430. trace_manager.add_trace_task(
  431. TraceTask(
  432. TraceTaskName.DATASET_RETRIEVAL_TRACE, message_id=message_id, documents=documents, timer=timer
  433. )
  434. )
  435. def _on_query(self, query: str, dataset_ids: list[str], app_id: str, user_from: str, user_id: str) -> None:
  436. """
  437. Handle query.
  438. """
  439. if not query:
  440. return
  441. dataset_queries = []
  442. for dataset_id in dataset_ids:
  443. dataset_query = DatasetQuery(
  444. dataset_id=dataset_id,
  445. content=query,
  446. source="app",
  447. source_app_id=app_id,
  448. created_by_role=user_from,
  449. created_by=user_id,
  450. )
  451. dataset_queries.append(dataset_query)
  452. if dataset_queries:
  453. db.session.add_all(dataset_queries)
  454. db.session.commit()
  455. def _retriever(self, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list):
  456. with flask_app.app_context():
  457. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  458. if not dataset:
  459. return []
  460. if dataset.provider == "external":
  461. external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
  462. tenant_id=dataset.tenant_id,
  463. dataset_id=dataset_id,
  464. query=query,
  465. external_retrieval_parameters=dataset.retrieval_model,
  466. )
  467. for external_document in external_documents:
  468. document = Document(
  469. page_content=external_document.get("content"),
  470. metadata=external_document.get("metadata"),
  471. provider="external",
  472. )
  473. if document.metadata is not None:
  474. document.metadata["score"] = external_document.get("score")
  475. document.metadata["title"] = external_document.get("title")
  476. document.metadata["dataset_id"] = dataset_id
  477. document.metadata["dataset_name"] = dataset.name
  478. all_documents.append(document)
  479. else:
  480. # get retrieval model , if the model is not setting , using default
  481. retrieval_model = dataset.retrieval_model or default_retrieval_model
  482. if dataset.indexing_technique == "economy":
  483. # use keyword table query
  484. documents = RetrievalService.retrieve(
  485. retrieval_method="keyword_search", dataset_id=dataset.id, query=query, top_k=top_k
  486. )
  487. if documents:
  488. all_documents.extend(documents)
  489. else:
  490. if top_k > 0:
  491. # retrieval source
  492. documents = RetrievalService.retrieve(
  493. retrieval_method=retrieval_model["search_method"],
  494. dataset_id=dataset.id,
  495. query=query,
  496. top_k=retrieval_model.get("top_k") or 2,
  497. score_threshold=retrieval_model.get("score_threshold", 0.0)
  498. if retrieval_model["score_threshold_enabled"]
  499. else 0.0,
  500. reranking_model=retrieval_model.get("reranking_model", None)
  501. if retrieval_model["reranking_enable"]
  502. else None,
  503. reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
  504. weights=retrieval_model.get("weights", None),
  505. )
  506. all_documents.extend(documents)
  507. def to_dataset_retriever_tool(
  508. self,
  509. tenant_id: str,
  510. dataset_ids: list[str],
  511. retrieve_config: DatasetRetrieveConfigEntity,
  512. return_resource: bool,
  513. invoke_from: InvokeFrom,
  514. hit_callback: DatasetIndexToolCallbackHandler,
  515. ) -> Optional[list[DatasetRetrieverBaseTool]]:
  516. """
  517. A dataset tool is a tool that can be used to retrieve information from a dataset
  518. :param tenant_id: tenant id
  519. :param dataset_ids: dataset ids
  520. :param retrieve_config: retrieve config
  521. :param return_resource: return resource
  522. :param invoke_from: invoke from
  523. :param hit_callback: hit callback
  524. """
  525. tools = []
  526. available_datasets = []
  527. for dataset_id in dataset_ids:
  528. # get dataset from dataset id
  529. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  530. # pass if dataset is not available
  531. if not dataset:
  532. continue
  533. # pass if dataset is not available
  534. if dataset and dataset.provider != "external" and dataset.available_document_count == 0:
  535. continue
  536. available_datasets.append(dataset)
  537. if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
  538. # get retrieval model config
  539. default_retrieval_model = {
  540. "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
  541. "reranking_enable": False,
  542. "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
  543. "top_k": 2,
  544. "score_threshold_enabled": False,
  545. }
  546. for dataset in available_datasets:
  547. retrieval_model_config = dataset.retrieval_model or default_retrieval_model
  548. # get top k
  549. top_k = retrieval_model_config["top_k"]
  550. # get score threshold
  551. score_threshold = None
  552. score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
  553. if score_threshold_enabled:
  554. score_threshold = retrieval_model_config.get("score_threshold")
  555. from core.tools.utils.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
  556. tool = DatasetRetrieverTool.from_dataset(
  557. dataset=dataset,
  558. top_k=top_k,
  559. score_threshold=score_threshold,
  560. hit_callbacks=[hit_callback],
  561. return_resource=return_resource,
  562. retriever_from=invoke_from.to_source(),
  563. )
  564. tools.append(tool)
  565. elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
  566. from core.tools.utils.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
  567. if retrieve_config.reranking_model is None:
  568. raise ValueError("Reranking model is required for multiple retrieval")
  569. tool = DatasetMultiRetrieverTool.from_dataset(
  570. dataset_ids=[dataset.id for dataset in available_datasets],
  571. tenant_id=tenant_id,
  572. top_k=retrieve_config.top_k or 2,
  573. score_threshold=retrieve_config.score_threshold,
  574. hit_callbacks=[hit_callback],
  575. return_resource=return_resource,
  576. retriever_from=invoke_from.to_source(),
  577. reranking_provider_name=retrieve_config.reranking_model.get("reranking_provider_name"),
  578. reranking_model_name=retrieve_config.reranking_model.get("reranking_model_name"),
  579. )
  580. tools.append(tool)
  581. return tools
  582. def calculate_keyword_score(self, query: str, documents: list[Document], top_k: int) -> list[Document]:
  583. """
  584. Calculate keywords scores
  585. :param query: search query
  586. :param documents: documents for reranking
  587. :return:
  588. """
  589. keyword_table_handler = JiebaKeywordTableHandler()
  590. query_keywords = keyword_table_handler.extract_keywords(query, None)
  591. documents_keywords = []
  592. for document in documents:
  593. if document.metadata is not None:
  594. # get the document keywords
  595. document_keywords = keyword_table_handler.extract_keywords(document.page_content, None)
  596. document.metadata["keywords"] = document_keywords
  597. documents_keywords.append(document_keywords)
  598. # Counter query keywords(TF)
  599. query_keyword_counts = Counter(query_keywords)
  600. # total documents
  601. total_documents = len(documents)
  602. # calculate all documents' keywords IDF
  603. all_keywords = set()
  604. for document_keywords in documents_keywords:
  605. all_keywords.update(document_keywords)
  606. keyword_idf = {}
  607. for keyword in all_keywords:
  608. # calculate include query keywords' documents
  609. doc_count_containing_keyword = sum(1 for doc_keywords in documents_keywords if keyword in doc_keywords)
  610. # IDF
  611. keyword_idf[keyword] = math.log((1 + total_documents) / (1 + doc_count_containing_keyword)) + 1
  612. query_tfidf = {}
  613. for keyword, count in query_keyword_counts.items():
  614. tf = count
  615. idf = keyword_idf.get(keyword, 0)
  616. query_tfidf[keyword] = tf * idf
  617. # calculate all documents' TF-IDF
  618. documents_tfidf = []
  619. for document_keywords in documents_keywords:
  620. document_keyword_counts = Counter(document_keywords)
  621. document_tfidf = {}
  622. for keyword, count in document_keyword_counts.items():
  623. tf = count
  624. idf = keyword_idf.get(keyword, 0)
  625. document_tfidf[keyword] = tf * idf
  626. documents_tfidf.append(document_tfidf)
  627. def cosine_similarity(vec1, vec2):
  628. intersection = set(vec1.keys()) & set(vec2.keys())
  629. numerator = sum(vec1[x] * vec2[x] for x in intersection)
  630. sum1 = sum(vec1[x] ** 2 for x in vec1)
  631. sum2 = sum(vec2[x] ** 2 for x in vec2)
  632. denominator = math.sqrt(sum1) * math.sqrt(sum2)
  633. if not denominator:
  634. return 0.0
  635. else:
  636. return float(numerator) / denominator
  637. similarities = []
  638. for document_tfidf in documents_tfidf:
  639. similarity = cosine_similarity(query_tfidf, document_tfidf)
  640. similarities.append(similarity)
  641. for document, score in zip(documents, similarities):
  642. # format document
  643. if document.metadata is not None:
  644. document.metadata["score"] = score
  645. documents = sorted(documents, key=lambda x: x.metadata.get("score", 0) if x.metadata else 0, reverse=True)
  646. return documents[:top_k] if top_k else documents
  647. def calculate_vector_score(
  648. self, all_documents: list[Document], top_k: int, score_threshold: float
  649. ) -> list[Document]:
  650. filter_documents = []
  651. for document in all_documents:
  652. if score_threshold is None or (document.metadata and document.metadata.get("score", 0) >= score_threshold):
  653. filter_documents.append(document)
  654. if not filter_documents:
  655. return []
  656. filter_documents = sorted(
  657. filter_documents, key=lambda x: x.metadata.get("score", 0) if x.metadata else 0, reverse=True
  658. )
  659. return filter_documents[:top_k] if top_k else filter_documents