123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732 |
- import math
- import threading
- from collections import Counter
- from typing import Any, Optional, cast
- from flask import Flask, current_app
- from core.app.app_config.entities import DatasetEntity, DatasetRetrieveConfigEntity
- from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
- from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
- from core.entities.agent_entities import PlanningStrategy
- from core.memory.token_buffer_memory import TokenBufferMemory
- from core.model_manager import ModelInstance, ModelManager
- from core.model_runtime.entities.message_entities import PromptMessageTool
- from core.model_runtime.entities.model_entities import ModelFeature, ModelType
- from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
- from core.ops.entities.trace_entity import TraceTaskName
- from core.ops.ops_trace_manager import TraceQueueManager, TraceTask
- from core.ops.utils import measure_time
- from core.rag.data_post_processor.data_post_processor import DataPostProcessor
- from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaKeywordTableHandler
- from core.rag.datasource.retrieval_service import RetrievalService
- from core.rag.entities.context_entities import DocumentContext
- from core.rag.index_processor.constant.index_type import IndexType
- from core.rag.models.document import Document
- from core.rag.rerank.rerank_type import RerankMode
- from core.rag.retrieval.retrieval_methods import RetrievalMethod
- from core.rag.retrieval.router.multi_dataset_function_call_router import FunctionCallMultiDatasetRouter
- from core.rag.retrieval.router.multi_dataset_react_route import ReactMultiDatasetRouter
- from core.tools.utils.dataset_retriever.dataset_retriever_base_tool import DatasetRetrieverBaseTool
- from extensions.ext_database import db
- from models.dataset import ChildChunk, Dataset, DatasetQuery, DocumentSegment
- from models.dataset import Document as DatasetDocument
- from services.external_knowledge_service import ExternalDatasetService
- default_retrieval_model: dict[str, Any] = {
- "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
- "reranking_enable": False,
- "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
- "top_k": 2,
- "score_threshold_enabled": False,
- }
- class DatasetRetrieval:
- def __init__(self, application_generate_entity=None):
- self.application_generate_entity = application_generate_entity
- def retrieve(
- self,
- app_id: str,
- user_id: str,
- tenant_id: str,
- model_config: ModelConfigWithCredentialsEntity,
- config: DatasetEntity,
- query: str,
- invoke_from: InvokeFrom,
- show_retrieve_source: bool,
- hit_callback: DatasetIndexToolCallbackHandler,
- message_id: str,
- memory: Optional[TokenBufferMemory] = None,
- ) -> Optional[str]:
- """
- Retrieve dataset.
- :param app_id: app_id
- :param user_id: user_id
- :param tenant_id: tenant id
- :param model_config: model config
- :param config: dataset config
- :param query: query
- :param invoke_from: invoke from
- :param show_retrieve_source: show retrieve source
- :param hit_callback: hit callback
- :param message_id: message id
- :param memory: memory
- :return:
- """
- dataset_ids = config.dataset_ids
- if len(dataset_ids) == 0:
- return None
- retrieve_config = config.retrieve_config
- # check model is support tool calling
- model_type_instance = model_config.provider_model_bundle.model_type_instance
- model_type_instance = cast(LargeLanguageModel, model_type_instance)
- model_manager = ModelManager()
- model_instance = model_manager.get_model_instance(
- tenant_id=tenant_id, model_type=ModelType.LLM, provider=model_config.provider, model=model_config.model
- )
- # get model schema
- model_schema = model_type_instance.get_model_schema(
- model=model_config.model, credentials=model_config.credentials
- )
- if not model_schema:
- return None
- planning_strategy = PlanningStrategy.REACT_ROUTER
- features = model_schema.features
- if features:
- if ModelFeature.TOOL_CALL in features or ModelFeature.MULTI_TOOL_CALL in features:
- planning_strategy = PlanningStrategy.ROUTER
- available_datasets = []
- for dataset_id in dataset_ids:
- # get dataset from dataset id
- dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
- # pass if dataset is not available
- if not dataset:
- continue
- # pass if dataset is not available
- if dataset and dataset.available_document_count == 0 and dataset.provider != "external":
- continue
- available_datasets.append(dataset)
- all_documents = []
- user_from = "account" if invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER} else "end_user"
- if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
- all_documents = self.single_retrieve(
- app_id,
- tenant_id,
- user_id,
- user_from,
- available_datasets,
- query,
- model_instance,
- model_config,
- planning_strategy,
- message_id,
- )
- elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
- all_documents = self.multiple_retrieve(
- app_id,
- tenant_id,
- user_id,
- user_from,
- available_datasets,
- query,
- retrieve_config.top_k or 0,
- retrieve_config.score_threshold or 0,
- retrieve_config.rerank_mode or "reranking_model",
- retrieve_config.reranking_model,
- retrieve_config.weights,
- retrieve_config.reranking_enabled or True,
- message_id,
- )
- dify_documents = [item for item in all_documents if item.provider == "dify"]
- external_documents = [item for item in all_documents if item.provider == "external"]
- document_context_list = []
- retrieval_resource_list = []
- # deal with external documents
- for item in external_documents:
- document_context_list.append(DocumentContext(content=item.page_content, score=item.metadata.get("score")))
- source = {
- "dataset_id": item.metadata.get("dataset_id"),
- "dataset_name": item.metadata.get("dataset_name"),
- "document_name": item.metadata.get("title"),
- "data_source_type": "external",
- "retriever_from": invoke_from.to_source(),
- "score": item.metadata.get("score"),
- "content": item.page_content,
- }
- retrieval_resource_list.append(source)
- # deal with dify documents
- if dify_documents:
- records = RetrievalService.format_retrieval_documents(dify_documents)
- if records:
- for record in records:
- segment = record.segment
- if segment.answer:
- document_context_list.append(
- DocumentContext(
- content=f"question:{segment.get_sign_content()} answer:{segment.answer}",
- score=record.score,
- )
- )
- else:
- document_context_list.append(
- DocumentContext(
- content=segment.get_sign_content(),
- score=record.score,
- )
- )
- if show_retrieve_source:
- for record in records:
- segment = record.segment
- dataset = Dataset.query.filter_by(id=segment.dataset_id).first()
- document = DatasetDocument.query.filter(
- DatasetDocument.id == segment.document_id,
- DatasetDocument.enabled == True,
- DatasetDocument.archived == False,
- ).first()
- if dataset and document:
- source = {
- "dataset_id": dataset.id,
- "dataset_name": dataset.name,
- "document_id": document.id,
- "document_name": document.name,
- "data_source_type": document.data_source_type,
- "segment_id": segment.id,
- "retriever_from": invoke_from.to_source(),
- "score": record.score or 0.0,
- "doc_metadata": document.doc_metadata,
- }
- if invoke_from.to_source() == "dev":
- source["hit_count"] = segment.hit_count
- source["word_count"] = segment.word_count
- source["segment_position"] = segment.position
- source["index_node_hash"] = segment.index_node_hash
- if segment.answer:
- source["content"] = f"question:{segment.content} \nanswer:{segment.answer}"
- else:
- source["content"] = segment.content
- retrieval_resource_list.append(source)
- if hit_callback and retrieval_resource_list:
- retrieval_resource_list = sorted(retrieval_resource_list, key=lambda x: x.get("score") or 0.0, reverse=True)
- for position, item in enumerate(retrieval_resource_list, start=1):
- item["position"] = position
- hit_callback.return_retriever_resource_info(retrieval_resource_list)
- if document_context_list:
- document_context_list = sorted(document_context_list, key=lambda x: x.score or 0.0, reverse=True)
- return str("\n".join([document_context.content for document_context in document_context_list]))
- return ""
- def single_retrieve(
- self,
- app_id: str,
- tenant_id: str,
- user_id: str,
- user_from: str,
- available_datasets: list,
- query: str,
- model_instance: ModelInstance,
- model_config: ModelConfigWithCredentialsEntity,
- planning_strategy: PlanningStrategy,
- message_id: Optional[str] = None,
- ):
- tools = []
- for dataset in available_datasets:
- description = dataset.description
- if not description:
- description = "useful for when you want to answer queries about the " + dataset.name
- description = description.replace("\n", "").replace("\r", "")
- message_tool = PromptMessageTool(
- name=dataset.id,
- description=description,
- parameters={
- "type": "object",
- "properties": {},
- "required": [],
- },
- )
- tools.append(message_tool)
- dataset_id = None
- if planning_strategy == PlanningStrategy.REACT_ROUTER:
- react_multi_dataset_router = ReactMultiDatasetRouter()
- dataset_id = react_multi_dataset_router.invoke(
- query, tools, model_config, model_instance, user_id, tenant_id
- )
- elif planning_strategy == PlanningStrategy.ROUTER:
- function_call_router = FunctionCallMultiDatasetRouter()
- dataset_id = function_call_router.invoke(query, tools, model_config, model_instance)
- if dataset_id:
- # get retrieval model config
- dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
- if dataset:
- results = []
- if dataset.provider == "external":
- external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
- tenant_id=dataset.tenant_id,
- dataset_id=dataset_id,
- query=query,
- external_retrieval_parameters=dataset.retrieval_model,
- )
- for external_document in external_documents:
- document = Document(
- page_content=external_document.get("content"),
- metadata=external_document.get("metadata"),
- provider="external",
- )
- if document.metadata is not None:
- document.metadata["score"] = external_document.get("score")
- document.metadata["title"] = external_document.get("title")
- document.metadata["dataset_id"] = dataset_id
- document.metadata["dataset_name"] = dataset.name
- results.append(document)
- else:
- retrieval_model_config = dataset.retrieval_model or default_retrieval_model
- # get top k
- top_k = retrieval_model_config["top_k"]
- # get retrieval method
- if dataset.indexing_technique == "economy":
- retrieval_method = "keyword_search"
- else:
- retrieval_method = retrieval_model_config["search_method"]
- # get reranking model
- reranking_model = (
- retrieval_model_config["reranking_model"]
- if retrieval_model_config["reranking_enable"]
- else None
- )
- # get score threshold
- score_threshold = 0.0
- score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
- if score_threshold_enabled:
- score_threshold = retrieval_model_config.get("score_threshold", 0.0)
- with measure_time() as timer:
- results = RetrievalService.retrieve(
- retrieval_method=retrieval_method,
- dataset_id=dataset.id,
- query=query,
- top_k=top_k,
- score_threshold=score_threshold,
- reranking_model=reranking_model,
- reranking_mode=retrieval_model_config.get("reranking_mode", "reranking_model"),
- weights=retrieval_model_config.get("weights", None),
- )
- self._on_query(query, [dataset_id], app_id, user_from, user_id)
- if results:
- self._on_retrieval_end(results, message_id, timer)
- return results
- return []
- def multiple_retrieve(
- self,
- app_id: str,
- tenant_id: str,
- user_id: str,
- user_from: str,
- available_datasets: list,
- query: str,
- top_k: int,
- score_threshold: float,
- reranking_mode: str,
- reranking_model: Optional[dict] = None,
- weights: Optional[dict[str, Any]] = None,
- reranking_enable: bool = True,
- message_id: Optional[str] = None,
- ):
- if not available_datasets:
- return []
- threads = []
- all_documents: list[Document] = []
- dataset_ids = [dataset.id for dataset in available_datasets]
- index_type_check = all(
- item.indexing_technique == available_datasets[0].indexing_technique for item in available_datasets
- )
- if not index_type_check and (not reranking_enable or reranking_mode != RerankMode.RERANKING_MODEL):
- raise ValueError(
- "The configured knowledge base list have different indexing technique, please set reranking model."
- )
- index_type = available_datasets[0].indexing_technique
- if index_type == "high_quality":
- embedding_model_check = all(
- item.embedding_model == available_datasets[0].embedding_model for item in available_datasets
- )
- embedding_model_provider_check = all(
- item.embedding_model_provider == available_datasets[0].embedding_model_provider
- for item in available_datasets
- )
- if (
- reranking_enable
- and reranking_mode == "weighted_score"
- and (not embedding_model_check or not embedding_model_provider_check)
- ):
- raise ValueError(
- "The configured knowledge base list have different embedding model, please set reranking model."
- )
- if reranking_enable and reranking_mode == RerankMode.WEIGHTED_SCORE:
- if weights is not None:
- weights["vector_setting"]["embedding_provider_name"] = available_datasets[
- 0
- ].embedding_model_provider
- weights["vector_setting"]["embedding_model_name"] = available_datasets[0].embedding_model
- for dataset in available_datasets:
- index_type = dataset.indexing_technique
- retrieval_thread = threading.Thread(
- target=self._retriever,
- kwargs={
- "flask_app": current_app._get_current_object(), # type: ignore
- "dataset_id": dataset.id,
- "query": query,
- "top_k": top_k,
- "all_documents": all_documents,
- },
- )
- threads.append(retrieval_thread)
- retrieval_thread.start()
- for thread in threads:
- thread.join()
- with measure_time() as timer:
- if reranking_enable:
- # do rerank for searched documents
- data_post_processor = DataPostProcessor(tenant_id, reranking_mode, reranking_model, weights, False)
- all_documents = data_post_processor.invoke(
- query=query, documents=all_documents, score_threshold=score_threshold, top_n=top_k
- )
- else:
- if index_type == "economy":
- all_documents = self.calculate_keyword_score(query, all_documents, top_k)
- elif index_type == "high_quality":
- all_documents = self.calculate_vector_score(all_documents, top_k, score_threshold)
- self._on_query(query, dataset_ids, app_id, user_from, user_id)
- if all_documents:
- self._on_retrieval_end(all_documents, message_id, timer)
- return all_documents
- def _on_retrieval_end(
- self, documents: list[Document], message_id: Optional[str] = None, timer: Optional[dict] = None
- ) -> None:
- """Handle retrieval end."""
- dify_documents = [document for document in documents if document.provider == "dify"]
- for document in dify_documents:
- if document.metadata is not None:
- dataset_document = DatasetDocument.query.filter(
- DatasetDocument.id == document.metadata["document_id"]
- ).first()
- if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
- child_chunk = ChildChunk.query.filter(
- ChildChunk.index_node_id == document.metadata["doc_id"],
- ChildChunk.dataset_id == dataset_document.dataset_id,
- ChildChunk.document_id == dataset_document.id,
- ).first()
- if child_chunk:
- segment = DocumentSegment.query.filter(DocumentSegment.id == child_chunk.segment_id).update(
- {DocumentSegment.hit_count: DocumentSegment.hit_count + 1}, synchronize_session=False
- )
- db.session.commit()
- else:
- query = db.session.query(DocumentSegment).filter(
- DocumentSegment.index_node_id == document.metadata["doc_id"]
- )
- # if 'dataset_id' in document.metadata:
- if "dataset_id" in document.metadata:
- query = query.filter(DocumentSegment.dataset_id == document.metadata["dataset_id"])
- # add hit count to document segment
- query.update({DocumentSegment.hit_count: DocumentSegment.hit_count + 1}, synchronize_session=False)
- db.session.commit()
- # get tracing instance
- trace_manager: TraceQueueManager | None = (
- self.application_generate_entity.trace_manager if self.application_generate_entity else None
- )
- if trace_manager:
- trace_manager.add_trace_task(
- TraceTask(
- TraceTaskName.DATASET_RETRIEVAL_TRACE, message_id=message_id, documents=documents, timer=timer
- )
- )
- def _on_query(self, query: str, dataset_ids: list[str], app_id: str, user_from: str, user_id: str) -> None:
- """
- Handle query.
- """
- if not query:
- return
- dataset_queries = []
- for dataset_id in dataset_ids:
- dataset_query = DatasetQuery(
- dataset_id=dataset_id,
- content=query,
- source="app",
- source_app_id=app_id,
- created_by_role=user_from,
- created_by=user_id,
- )
- dataset_queries.append(dataset_query)
- if dataset_queries:
- db.session.add_all(dataset_queries)
- db.session.commit()
- def _retriever(self, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list):
- with flask_app.app_context():
- dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
- if not dataset:
- return []
- if dataset.provider == "external":
- external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
- tenant_id=dataset.tenant_id,
- dataset_id=dataset_id,
- query=query,
- external_retrieval_parameters=dataset.retrieval_model,
- )
- for external_document in external_documents:
- document = Document(
- page_content=external_document.get("content"),
- metadata=external_document.get("metadata"),
- provider="external",
- )
- if document.metadata is not None:
- document.metadata["score"] = external_document.get("score")
- document.metadata["title"] = external_document.get("title")
- document.metadata["dataset_id"] = dataset_id
- document.metadata["dataset_name"] = dataset.name
- all_documents.append(document)
- else:
- # get retrieval model , if the model is not setting , using default
- retrieval_model = dataset.retrieval_model or default_retrieval_model
- if dataset.indexing_technique == "economy":
- # use keyword table query
- documents = RetrievalService.retrieve(
- retrieval_method="keyword_search", dataset_id=dataset.id, query=query, top_k=top_k
- )
- if documents:
- all_documents.extend(documents)
- else:
- if top_k > 0:
- # retrieval source
- documents = RetrievalService.retrieve(
- retrieval_method=retrieval_model["search_method"],
- dataset_id=dataset.id,
- query=query,
- top_k=retrieval_model.get("top_k") or 2,
- score_threshold=retrieval_model.get("score_threshold", 0.0)
- if retrieval_model["score_threshold_enabled"]
- else 0.0,
- reranking_model=retrieval_model.get("reranking_model", None)
- if retrieval_model["reranking_enable"]
- else None,
- reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
- weights=retrieval_model.get("weights", None),
- )
- all_documents.extend(documents)
- def to_dataset_retriever_tool(
- self,
- tenant_id: str,
- dataset_ids: list[str],
- retrieve_config: DatasetRetrieveConfigEntity,
- return_resource: bool,
- invoke_from: InvokeFrom,
- hit_callback: DatasetIndexToolCallbackHandler,
- ) -> Optional[list[DatasetRetrieverBaseTool]]:
- """
- A dataset tool is a tool that can be used to retrieve information from a dataset
- :param tenant_id: tenant id
- :param dataset_ids: dataset ids
- :param retrieve_config: retrieve config
- :param return_resource: return resource
- :param invoke_from: invoke from
- :param hit_callback: hit callback
- """
- tools = []
- available_datasets = []
- for dataset_id in dataset_ids:
- # get dataset from dataset id
- dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
- # pass if dataset is not available
- if not dataset:
- continue
- # pass if dataset is not available
- if dataset and dataset.provider != "external" and dataset.available_document_count == 0:
- continue
- available_datasets.append(dataset)
- if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
- # get retrieval model config
- default_retrieval_model = {
- "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
- "reranking_enable": False,
- "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
- "top_k": 2,
- "score_threshold_enabled": False,
- }
- for dataset in available_datasets:
- retrieval_model_config = dataset.retrieval_model or default_retrieval_model
- # get top k
- top_k = retrieval_model_config["top_k"]
- # get score threshold
- score_threshold = None
- score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
- if score_threshold_enabled:
- score_threshold = retrieval_model_config.get("score_threshold")
- from core.tools.utils.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
- tool = DatasetRetrieverTool.from_dataset(
- dataset=dataset,
- top_k=top_k,
- score_threshold=score_threshold,
- hit_callbacks=[hit_callback],
- return_resource=return_resource,
- retriever_from=invoke_from.to_source(),
- )
- tools.append(tool)
- elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
- from core.tools.utils.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
- if retrieve_config.reranking_model is None:
- raise ValueError("Reranking model is required for multiple retrieval")
- tool = DatasetMultiRetrieverTool.from_dataset(
- dataset_ids=[dataset.id for dataset in available_datasets],
- tenant_id=tenant_id,
- top_k=retrieve_config.top_k or 2,
- score_threshold=retrieve_config.score_threshold,
- hit_callbacks=[hit_callback],
- return_resource=return_resource,
- retriever_from=invoke_from.to_source(),
- reranking_provider_name=retrieve_config.reranking_model.get("reranking_provider_name"),
- reranking_model_name=retrieve_config.reranking_model.get("reranking_model_name"),
- )
- tools.append(tool)
- return tools
- def calculate_keyword_score(self, query: str, documents: list[Document], top_k: int) -> list[Document]:
- """
- Calculate keywords scores
- :param query: search query
- :param documents: documents for reranking
- :return:
- """
- keyword_table_handler = JiebaKeywordTableHandler()
- query_keywords = keyword_table_handler.extract_keywords(query, None)
- documents_keywords = []
- for document in documents:
- if document.metadata is not None:
- # get the document keywords
- document_keywords = keyword_table_handler.extract_keywords(document.page_content, None)
- document.metadata["keywords"] = document_keywords
- documents_keywords.append(document_keywords)
- # Counter query keywords(TF)
- query_keyword_counts = Counter(query_keywords)
- # total documents
- total_documents = len(documents)
- # calculate all documents' keywords IDF
- all_keywords = set()
- for document_keywords in documents_keywords:
- all_keywords.update(document_keywords)
- keyword_idf = {}
- for keyword in all_keywords:
- # calculate include query keywords' documents
- doc_count_containing_keyword = sum(1 for doc_keywords in documents_keywords if keyword in doc_keywords)
- # IDF
- keyword_idf[keyword] = math.log((1 + total_documents) / (1 + doc_count_containing_keyword)) + 1
- query_tfidf = {}
- for keyword, count in query_keyword_counts.items():
- tf = count
- idf = keyword_idf.get(keyword, 0)
- query_tfidf[keyword] = tf * idf
- # calculate all documents' TF-IDF
- documents_tfidf = []
- for document_keywords in documents_keywords:
- document_keyword_counts = Counter(document_keywords)
- document_tfidf = {}
- for keyword, count in document_keyword_counts.items():
- tf = count
- idf = keyword_idf.get(keyword, 0)
- document_tfidf[keyword] = tf * idf
- documents_tfidf.append(document_tfidf)
- def cosine_similarity(vec1, vec2):
- intersection = set(vec1.keys()) & set(vec2.keys())
- numerator = sum(vec1[x] * vec2[x] for x in intersection)
- sum1 = sum(vec1[x] ** 2 for x in vec1)
- sum2 = sum(vec2[x] ** 2 for x in vec2)
- denominator = math.sqrt(sum1) * math.sqrt(sum2)
- if not denominator:
- return 0.0
- else:
- return float(numerator) / denominator
- similarities = []
- for document_tfidf in documents_tfidf:
- similarity = cosine_similarity(query_tfidf, document_tfidf)
- similarities.append(similarity)
- for document, score in zip(documents, similarities):
- # format document
- if document.metadata is not None:
- document.metadata["score"] = score
- documents = sorted(documents, key=lambda x: x.metadata.get("score", 0) if x.metadata else 0, reverse=True)
- return documents[:top_k] if top_k else documents
- def calculate_vector_score(
- self, all_documents: list[Document], top_k: int, score_threshold: float
- ) -> list[Document]:
- filter_documents = []
- for document in all_documents:
- if score_threshold is None or (document.metadata and document.metadata.get("score", 0) >= score_threshold):
- filter_documents.append(document)
- if not filter_documents:
- return []
- filter_documents = sorted(
- filter_documents, key=lambda x: x.metadata.get("score", 0) if x.metadata else 0, reverse=True
- )
- return filter_documents[:top_k] if top_k else filter_documents
|