123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142 |
- import base64
- import logging
- from typing import Any, Optional, cast
- import numpy as np
- from sqlalchemy.exc import IntegrityError
- from configs import dify_config
- from core.entities.embedding_type import EmbeddingInputType
- from core.model_manager import ModelInstance
- from core.model_runtime.entities.model_entities import ModelPropertyKey
- from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
- from core.rag.embedding.embedding_base import Embeddings
- from extensions.ext_database import db
- from extensions.ext_redis import redis_client
- from libs import helper
- from models.dataset import Embedding
- logger = logging.getLogger(__name__)
- class CacheEmbedding(Embeddings):
- def __init__(self, model_instance: ModelInstance, user: Optional[str] = None) -> None:
- self._model_instance = model_instance
- self._user = user
- def embed_documents(self, texts: list[str]) -> list[list[float]]:
- """Embed search docs in batches of 10."""
- # use doc embedding cache or store if not exists
- text_embeddings: list[Any] = [None for _ in range(len(texts))]
- embedding_queue_indices = []
- for i, text in enumerate(texts):
- hash = helper.generate_text_hash(text)
- embedding = (
- db.session.query(Embedding)
- .filter_by(
- model_name=self._model_instance.model, hash=hash, provider_name=self._model_instance.provider
- )
- .first()
- )
- if embedding:
- text_embeddings[i] = embedding.get_embedding()
- else:
- embedding_queue_indices.append(i)
- if embedding_queue_indices:
- embedding_queue_texts = [texts[i] for i in embedding_queue_indices]
- embedding_queue_embeddings = []
- try:
- model_type_instance = cast(TextEmbeddingModel, self._model_instance.model_type_instance)
- model_schema = model_type_instance.get_model_schema(
- self._model_instance.model, self._model_instance.credentials
- )
- max_chunks = (
- model_schema.model_properties[ModelPropertyKey.MAX_CHUNKS]
- if model_schema and ModelPropertyKey.MAX_CHUNKS in model_schema.model_properties
- else 1
- )
- for i in range(0, len(embedding_queue_texts), max_chunks):
- batch_texts = embedding_queue_texts[i : i + max_chunks]
- embedding_result = self._model_instance.invoke_text_embedding(
- texts=batch_texts, user=self._user, input_type=EmbeddingInputType.DOCUMENT
- )
- for vector in embedding_result.embeddings:
- try:
- # FIXME: type ignore for numpy here
- normalized_embedding = (vector / np.linalg.norm(vector)).tolist() # type: ignore
- # stackoverflow best way: https://stackoverflow.com/questions/20319813/how-to-check-list-containing-nan
- if np.isnan(normalized_embedding).any():
- # for issue #11827 float values are not json compliant
- logger.warning(f"Normalized embedding is nan: {normalized_embedding}")
- continue
- embedding_queue_embeddings.append(normalized_embedding)
- except IntegrityError:
- db.session.rollback()
- except Exception:
- logging.exception("Failed transform embedding")
- cache_embeddings = []
- try:
- for i, n_embedding in zip(embedding_queue_indices, embedding_queue_embeddings):
- text_embeddings[i] = n_embedding
- hash = helper.generate_text_hash(texts[i])
- if hash not in cache_embeddings:
- embedding_cache = Embedding(
- model_name=self._model_instance.model,
- hash=hash,
- provider_name=self._model_instance.provider,
- )
- embedding_cache.set_embedding(n_embedding)
- db.session.add(embedding_cache)
- cache_embeddings.append(hash)
- db.session.commit()
- except IntegrityError:
- db.session.rollback()
- except Exception as ex:
- db.session.rollback()
- logger.exception("Failed to embed documents: %s")
- raise ex
- return text_embeddings
- def embed_query(self, text: str) -> list[float]:
- """Embed query text."""
- # use doc embedding cache or store if not exists
- hash = helper.generate_text_hash(text)
- embedding_cache_key = f"{self._model_instance.provider}_{self._model_instance.model}_{hash}"
- embedding = redis_client.get(embedding_cache_key)
- if embedding:
- redis_client.expire(embedding_cache_key, 600)
- decoded_embedding = np.frombuffer(base64.b64decode(embedding), dtype="float")
- return [float(x) for x in decoded_embedding]
- try:
- embedding_result = self._model_instance.invoke_text_embedding(
- texts=[text], user=self._user, input_type=EmbeddingInputType.QUERY
- )
- embedding_results = embedding_result.embeddings[0]
- # FIXME: type ignore for numpy here
- embedding_results = (embedding_results / np.linalg.norm(embedding_results)).tolist() # type: ignore
- if np.isnan(embedding_results).any():
- raise ValueError("Normalized embedding is nan please try again")
- except Exception as ex:
- if dify_config.DEBUG:
- logging.exception(f"Failed to embed query text '{text[:10]}...({len(text)} chars)'")
- raise ex
- try:
- # encode embedding to base64
- embedding_vector = np.array(embedding_results)
- vector_bytes = embedding_vector.tobytes()
- # Transform to Base64
- encoded_vector = base64.b64encode(vector_bytes)
- # Transform to string
- encoded_str = encoded_vector.decode("utf-8")
- redis_client.setex(embedding_cache_key, 600, encoded_str)
- except Exception as ex:
- if dify_config.DEBUG:
- logging.exception(f"Failed to add embedding to redis for the text '{text[:10]}...({len(text)} chars)'")
- raise ex
- return embedding_results
|