123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130 |
- from core.model_runtime.entities.model_entities import DefaultParameterName
- PARAMETER_RULE_TEMPLATE: dict[DefaultParameterName, dict] = {
- DefaultParameterName.TEMPERATURE: {
- "label": {
- "en_US": "Temperature",
- "zh_Hans": "温度",
- },
- "type": "float",
- "help": {
- "en_US": "Controls randomness. Lower temperature results in less random completions."
- " As the temperature approaches zero, the model will become deterministic and repetitive."
- " Higher temperature results in more random completions.",
- "zh_Hans": "温度控制随机性。较低的温度会导致较少的随机完成。随着温度接近零,模型将变得确定性和重复性。"
- "较高的温度会导致更多的随机完成。",
- },
- "required": False,
- "default": 0.0,
- "min": 0.0,
- "max": 1.0,
- "precision": 2,
- },
- DefaultParameterName.TOP_P: {
- "label": {
- "en_US": "Top P",
- "zh_Hans": "Top P",
- },
- "type": "float",
- "help": {
- "en_US": "Controls diversity via nucleus sampling: 0.5 means half of all likelihood-weighted options"
- " are considered.",
- "zh_Hans": "通过核心采样控制多样性:0.5表示考虑了一半的所有可能性加权选项。",
- },
- "required": False,
- "default": 1.0,
- "min": 0.0,
- "max": 1.0,
- "precision": 2,
- },
- DefaultParameterName.TOP_K: {
- "label": {
- "en_US": "Top K",
- "zh_Hans": "Top K",
- },
- "type": "int",
- "help": {
- "en_US": "Limits the number of tokens to consider for each step by keeping only the k most likely tokens.",
- "zh_Hans": "通过只保留每一步中最可能的 k 个标记来限制要考虑的标记数量。",
- },
- "required": False,
- "default": 50,
- "min": 1,
- "max": 100,
- "precision": 0,
- },
- DefaultParameterName.PRESENCE_PENALTY: {
- "label": {
- "en_US": "Presence Penalty",
- "zh_Hans": "存在惩罚",
- },
- "type": "float",
- "help": {
- "en_US": "Applies a penalty to the log-probability of tokens already in the text.",
- "zh_Hans": "对文本中已有的标记的对数概率施加惩罚。",
- },
- "required": False,
- "default": 0.0,
- "min": 0.0,
- "max": 1.0,
- "precision": 2,
- },
- DefaultParameterName.FREQUENCY_PENALTY: {
- "label": {
- "en_US": "Frequency Penalty",
- "zh_Hans": "频率惩罚",
- },
- "type": "float",
- "help": {
- "en_US": "Applies a penalty to the log-probability of tokens that appear in the text.",
- "zh_Hans": "对文本中出现的标记的对数概率施加惩罚。",
- },
- "required": False,
- "default": 0.0,
- "min": 0.0,
- "max": 1.0,
- "precision": 2,
- },
- DefaultParameterName.MAX_TOKENS: {
- "label": {
- "en_US": "Max Tokens",
- "zh_Hans": "最大标记",
- },
- "type": "int",
- "help": {
- "en_US": "Specifies the upper limit on the length of generated results."
- " If the generated results are truncated, you can increase this parameter.",
- "zh_Hans": "指定生成结果长度的上限。如果生成结果截断,可以调大该参数。",
- },
- "required": False,
- "default": 64,
- "min": 1,
- "max": 2048,
- "precision": 0,
- },
- DefaultParameterName.RESPONSE_FORMAT: {
- "label": {
- "en_US": "Response Format",
- "zh_Hans": "回复格式",
- },
- "type": "string",
- "help": {
- "en_US": "Set a response format, ensure the output from llm is a valid code block as possible,"
- " such as JSON, XML, etc.",
- "zh_Hans": "设置一个返回格式,确保llm的输出尽可能是有效的代码块,如JSON、XML等",
- },
- "required": False,
- "options": ["JSON", "XML"],
- },
- DefaultParameterName.JSON_SCHEMA: {
- "label": {
- "en_US": "JSON Schema",
- },
- "type": "text",
- "help": {
- "en_US": "Set a response json schema will ensure LLM to adhere it.",
- "zh_Hans": "设置返回的json schema,llm将按照它返回",
- },
- "required": False,
- },
- }
|