duplicate_document_indexing_task.py 3.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596
  1. import datetime
  2. import logging
  3. import time
  4. import click
  5. from celery import shared_task # type: ignore
  6. from configs import dify_config
  7. from core.indexing_runner import DocumentIsPausedError, IndexingRunner
  8. from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
  9. from extensions.ext_database import db
  10. from models.dataset import Dataset, Document, DocumentSegment
  11. from services.feature_service import FeatureService
  12. @shared_task(queue="dataset")
  13. def duplicate_document_indexing_task(dataset_id: str, document_ids: list):
  14. """
  15. Async process document
  16. :param dataset_id:
  17. :param document_ids:
  18. Usage: duplicate_document_indexing_task.delay(dataset_id, document_ids)
  19. """
  20. documents = []
  21. start_at = time.perf_counter()
  22. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  23. if dataset is None:
  24. raise ValueError("Dataset not found")
  25. # check document limit
  26. features = FeatureService.get_features(dataset.tenant_id)
  27. try:
  28. if features.billing.enabled:
  29. vector_space = features.vector_space
  30. count = len(document_ids)
  31. batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
  32. if count > batch_upload_limit:
  33. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  34. if 0 < vector_space.limit <= vector_space.size:
  35. raise ValueError(
  36. "Your total number of documents plus the number of uploads have over the limit of "
  37. "your subscription."
  38. )
  39. except Exception as e:
  40. for document_id in document_ids:
  41. document = (
  42. db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
  43. )
  44. if document:
  45. document.indexing_status = "error"
  46. document.error = str(e)
  47. document.stopped_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
  48. db.session.add(document)
  49. db.session.commit()
  50. return
  51. for document_id in document_ids:
  52. logging.info(click.style("Start process document: {}".format(document_id), fg="green"))
  53. document = (
  54. db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
  55. )
  56. if document:
  57. # clean old data
  58. index_type = document.doc_form
  59. index_processor = IndexProcessorFactory(index_type).init_index_processor()
  60. segments = db.session.query(DocumentSegment).filter(DocumentSegment.document_id == document_id).all()
  61. if segments:
  62. index_node_ids = [segment.index_node_id for segment in segments]
  63. # delete from vector index
  64. index_processor.clean(dataset, index_node_ids, with_keywords=True, delete_child_chunks=True)
  65. for segment in segments:
  66. db.session.delete(segment)
  67. db.session.commit()
  68. document.indexing_status = "parsing"
  69. document.processing_started_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
  70. documents.append(document)
  71. db.session.add(document)
  72. db.session.commit()
  73. try:
  74. indexing_runner = IndexingRunner()
  75. indexing_runner.run(documents)
  76. end_at = time.perf_counter()
  77. logging.info(click.style("Processed dataset: {} latency: {}".format(dataset_id, end_at - start_at), fg="green"))
  78. except DocumentIsPausedError as ex:
  79. logging.info(click.style(str(ex), fg="yellow"))
  80. except Exception:
  81. pass