weight_rerank.py 6.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185
  1. import math
  2. from collections import Counter
  3. from typing import Optional
  4. import numpy as np
  5. from core.model_manager import ModelManager
  6. from core.model_runtime.entities.model_entities import ModelType
  7. from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaKeywordTableHandler
  8. from core.rag.embedding.cached_embedding import CacheEmbedding
  9. from core.rag.models.document import Document
  10. from core.rag.rerank.entity.weight import VectorSetting, Weights
  11. from core.rag.rerank.rerank_base import BaseRerankRunner
  12. class WeightRerankRunner(BaseRerankRunner):
  13. def __init__(self, tenant_id: str, weights: Weights) -> None:
  14. self.tenant_id = tenant_id
  15. self.weights = weights
  16. def run(
  17. self,
  18. query: str,
  19. documents: list[Document],
  20. score_threshold: Optional[float] = None,
  21. top_n: Optional[int] = None,
  22. user: Optional[str] = None,
  23. ) -> list[Document]:
  24. """
  25. Run rerank model
  26. :param query: search query
  27. :param documents: documents for reranking
  28. :param score_threshold: score threshold
  29. :param top_n: top n
  30. :param user: unique user id if needed
  31. :return:
  32. """
  33. unique_documents = []
  34. doc_ids = set()
  35. for document in documents:
  36. if document.metadata is not None and document.metadata["doc_id"] not in doc_ids:
  37. doc_ids.add(document.metadata["doc_id"])
  38. unique_documents.append(document)
  39. documents = unique_documents
  40. query_scores = self._calculate_keyword_score(query, documents)
  41. query_vector_scores = self._calculate_cosine(self.tenant_id, query, documents, self.weights.vector_setting)
  42. rerank_documents = []
  43. for document, query_score, query_vector_score in zip(documents, query_scores, query_vector_scores):
  44. score = (
  45. self.weights.vector_setting.vector_weight * query_vector_score
  46. + self.weights.keyword_setting.keyword_weight * query_score
  47. )
  48. if score_threshold and score < score_threshold:
  49. continue
  50. if document.metadata is not None:
  51. document.metadata["score"] = score
  52. rerank_documents.append(document)
  53. rerank_documents.sort(key=lambda x: x.metadata["score"] if x.metadata else 0, reverse=True)
  54. return rerank_documents[:top_n] if top_n else rerank_documents
  55. def _calculate_keyword_score(self, query: str, documents: list[Document]) -> list[float]:
  56. """
  57. Calculate BM25 scores
  58. :param query: search query
  59. :param documents: documents for reranking
  60. :return:
  61. """
  62. keyword_table_handler = JiebaKeywordTableHandler()
  63. query_keywords = keyword_table_handler.extract_keywords(query, None)
  64. documents_keywords = []
  65. for document in documents:
  66. # get the document keywords
  67. document_keywords = keyword_table_handler.extract_keywords(document.page_content, None)
  68. if document.metadata is not None:
  69. document.metadata["keywords"] = document_keywords
  70. documents_keywords.append(document_keywords)
  71. # Counter query keywords(TF)
  72. query_keyword_counts = Counter(query_keywords)
  73. # total documents
  74. total_documents = len(documents)
  75. # calculate all documents' keywords IDF
  76. all_keywords = set()
  77. for document_keywords in documents_keywords:
  78. all_keywords.update(document_keywords)
  79. keyword_idf = {}
  80. for keyword in all_keywords:
  81. # calculate include query keywords' documents
  82. doc_count_containing_keyword = sum(1 for doc_keywords in documents_keywords if keyword in doc_keywords)
  83. # IDF
  84. keyword_idf[keyword] = math.log((1 + total_documents) / (1 + doc_count_containing_keyword)) + 1
  85. query_tfidf = {}
  86. for keyword, count in query_keyword_counts.items():
  87. tf = count
  88. idf = keyword_idf.get(keyword, 0)
  89. query_tfidf[keyword] = tf * idf
  90. # calculate all documents' TF-IDF
  91. documents_tfidf = []
  92. for document_keywords in documents_keywords:
  93. document_keyword_counts = Counter(document_keywords)
  94. document_tfidf = {}
  95. for keyword, count in document_keyword_counts.items():
  96. tf = count
  97. idf = keyword_idf.get(keyword, 0)
  98. document_tfidf[keyword] = tf * idf
  99. documents_tfidf.append(document_tfidf)
  100. def cosine_similarity(vec1, vec2):
  101. intersection = set(vec1.keys()) & set(vec2.keys())
  102. numerator = sum(vec1[x] * vec2[x] for x in intersection)
  103. sum1 = sum(vec1[x] ** 2 for x in vec1)
  104. sum2 = sum(vec2[x] ** 2 for x in vec2)
  105. denominator = math.sqrt(sum1) * math.sqrt(sum2)
  106. if not denominator:
  107. return 0.0
  108. else:
  109. return float(numerator) / denominator
  110. similarities = []
  111. for document_tfidf in documents_tfidf:
  112. similarity = cosine_similarity(query_tfidf, document_tfidf)
  113. similarities.append(similarity)
  114. # for idx, similarity in enumerate(similarities):
  115. # print(f"Document {idx + 1} similarity: {similarity}")
  116. return similarities
  117. def _calculate_cosine(
  118. self, tenant_id: str, query: str, documents: list[Document], vector_setting: VectorSetting
  119. ) -> list[float]:
  120. """
  121. Calculate Cosine scores
  122. :param query: search query
  123. :param documents: documents for reranking
  124. :return:
  125. """
  126. query_vector_scores = []
  127. model_manager = ModelManager()
  128. embedding_model = model_manager.get_model_instance(
  129. tenant_id=tenant_id,
  130. provider=vector_setting.embedding_provider_name,
  131. model_type=ModelType.TEXT_EMBEDDING,
  132. model=vector_setting.embedding_model_name,
  133. )
  134. cache_embedding = CacheEmbedding(embedding_model)
  135. query_vector = cache_embedding.embed_query(query)
  136. for document in documents:
  137. # calculate cosine similarity
  138. if document.metadata and "score" in document.metadata:
  139. query_vector_scores.append(document.metadata["score"])
  140. else:
  141. # transform to NumPy
  142. vec1 = np.array(query_vector)
  143. vec2 = np.array(document.vector)
  144. # calculate dot product
  145. dot_product = np.dot(vec1, vec2)
  146. # calculate norm
  147. norm_vec1 = np.linalg.norm(vec1)
  148. norm_vec2 = np.linalg.norm(vec2)
  149. # calculate cosine similarity
  150. cosine_sim = dot_product / (norm_vec1 * norm_vec2)
  151. query_vector_scores.append(cosine_sim)
  152. return query_vector_scores