model.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335
  1. import tempfile
  2. from binascii import hexlify, unhexlify
  3. from collections.abc import Generator
  4. from core.model_manager import ModelManager
  5. from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
  6. from core.model_runtime.entities.message_entities import (
  7. PromptMessage,
  8. SystemPromptMessage,
  9. UserPromptMessage,
  10. )
  11. from core.plugin.backwards_invocation.base import BaseBackwardsInvocation
  12. from core.plugin.entities.request import (
  13. RequestInvokeLLM,
  14. RequestInvokeModeration,
  15. RequestInvokeRerank,
  16. RequestInvokeSpeech2Text,
  17. RequestInvokeSummary,
  18. RequestInvokeTextEmbedding,
  19. RequestInvokeTTS,
  20. )
  21. from core.tools.entities.tool_entities import ToolProviderType
  22. from core.tools.utils.model_invocation_utils import ModelInvocationUtils
  23. from core.workflow.nodes.llm.node import LLMNode
  24. from models.account import Tenant
  25. class PluginModelBackwardsInvocation(BaseBackwardsInvocation):
  26. @classmethod
  27. def invoke_llm(
  28. cls, user_id: str, tenant: Tenant, payload: RequestInvokeLLM
  29. ) -> Generator[LLMResultChunk, None, None] | LLMResult:
  30. """
  31. invoke llm
  32. """
  33. model_instance = ModelManager().get_model_instance(
  34. tenant_id=tenant.id,
  35. provider=payload.provider,
  36. model_type=payload.model_type,
  37. model=payload.model,
  38. )
  39. # invoke model
  40. response = model_instance.invoke_llm(
  41. prompt_messages=payload.prompt_messages,
  42. model_parameters=payload.completion_params,
  43. tools=payload.tools,
  44. stop=payload.stop,
  45. stream=True if payload.stream is None else payload.stream,
  46. user=user_id,
  47. )
  48. if isinstance(response, Generator):
  49. def handle() -> Generator[LLMResultChunk, None, None]:
  50. for chunk in response:
  51. if chunk.delta.usage:
  52. LLMNode.deduct_llm_quota(
  53. tenant_id=tenant.id, model_instance=model_instance, usage=chunk.delta.usage
  54. )
  55. yield chunk
  56. return handle()
  57. else:
  58. if response.usage:
  59. LLMNode.deduct_llm_quota(tenant_id=tenant.id, model_instance=model_instance, usage=response.usage)
  60. def handle_non_streaming(response: LLMResult) -> Generator[LLMResultChunk, None, None]:
  61. yield LLMResultChunk(
  62. model=response.model,
  63. prompt_messages=response.prompt_messages,
  64. system_fingerprint=response.system_fingerprint,
  65. delta=LLMResultChunkDelta(
  66. index=0,
  67. message=response.message,
  68. usage=response.usage,
  69. finish_reason="",
  70. ),
  71. )
  72. return handle_non_streaming(response)
  73. @classmethod
  74. def invoke_text_embedding(cls, user_id: str, tenant: Tenant, payload: RequestInvokeTextEmbedding):
  75. """
  76. invoke text embedding
  77. """
  78. model_instance = ModelManager().get_model_instance(
  79. tenant_id=tenant.id,
  80. provider=payload.provider,
  81. model_type=payload.model_type,
  82. model=payload.model,
  83. )
  84. # invoke model
  85. response = model_instance.invoke_text_embedding(
  86. texts=payload.texts,
  87. user=user_id,
  88. )
  89. return response
  90. @classmethod
  91. def invoke_rerank(cls, user_id: str, tenant: Tenant, payload: RequestInvokeRerank):
  92. """
  93. invoke rerank
  94. """
  95. model_instance = ModelManager().get_model_instance(
  96. tenant_id=tenant.id,
  97. provider=payload.provider,
  98. model_type=payload.model_type,
  99. model=payload.model,
  100. )
  101. # invoke model
  102. response = model_instance.invoke_rerank(
  103. query=payload.query,
  104. docs=payload.docs,
  105. score_threshold=payload.score_threshold,
  106. top_n=payload.top_n,
  107. user=user_id,
  108. )
  109. return response
  110. @classmethod
  111. def invoke_tts(cls, user_id: str, tenant: Tenant, payload: RequestInvokeTTS):
  112. """
  113. invoke tts
  114. """
  115. model_instance = ModelManager().get_model_instance(
  116. tenant_id=tenant.id,
  117. provider=payload.provider,
  118. model_type=payload.model_type,
  119. model=payload.model,
  120. )
  121. # invoke model
  122. response = model_instance.invoke_tts(
  123. content_text=payload.content_text,
  124. tenant_id=tenant.id,
  125. voice=payload.voice,
  126. user=user_id,
  127. )
  128. def handle() -> Generator[dict, None, None]:
  129. for chunk in response:
  130. yield {"result": hexlify(chunk).decode("utf-8")}
  131. return handle()
  132. @classmethod
  133. def invoke_speech2text(cls, user_id: str, tenant: Tenant, payload: RequestInvokeSpeech2Text):
  134. """
  135. invoke speech2text
  136. """
  137. model_instance = ModelManager().get_model_instance(
  138. tenant_id=tenant.id,
  139. provider=payload.provider,
  140. model_type=payload.model_type,
  141. model=payload.model,
  142. )
  143. # invoke model
  144. with tempfile.NamedTemporaryFile(suffix=".mp3", mode="wb", delete=True) as temp:
  145. temp.write(unhexlify(payload.file))
  146. temp.flush()
  147. temp.seek(0)
  148. response = model_instance.invoke_speech2text(
  149. file=temp,
  150. user=user_id,
  151. )
  152. return {
  153. "result": response,
  154. }
  155. @classmethod
  156. def invoke_moderation(cls, user_id: str, tenant: Tenant, payload: RequestInvokeModeration):
  157. """
  158. invoke moderation
  159. """
  160. model_instance = ModelManager().get_model_instance(
  161. tenant_id=tenant.id,
  162. provider=payload.provider,
  163. model_type=payload.model_type,
  164. model=payload.model,
  165. )
  166. # invoke model
  167. response = model_instance.invoke_moderation(
  168. text=payload.text,
  169. user=user_id,
  170. )
  171. return {
  172. "result": response,
  173. }
  174. @classmethod
  175. def get_system_model_max_tokens(cls, tenant_id: str) -> int:
  176. """
  177. get system model max tokens
  178. """
  179. return ModelInvocationUtils.get_max_llm_context_tokens(tenant_id=tenant_id)
  180. @classmethod
  181. def get_prompt_tokens(cls, tenant_id: str, prompt_messages: list[PromptMessage]) -> int:
  182. """
  183. get prompt tokens
  184. """
  185. return ModelInvocationUtils.calculate_tokens(tenant_id=tenant_id, prompt_messages=prompt_messages)
  186. @classmethod
  187. def invoke_system_model(
  188. cls,
  189. user_id: str,
  190. tenant: Tenant,
  191. prompt_messages: list[PromptMessage],
  192. ) -> LLMResult:
  193. """
  194. invoke system model
  195. """
  196. return ModelInvocationUtils.invoke(
  197. user_id=user_id,
  198. tenant_id=tenant.id,
  199. tool_type=ToolProviderType.PLUGIN,
  200. tool_name="plugin",
  201. prompt_messages=prompt_messages,
  202. )
  203. @classmethod
  204. def invoke_summary(cls, user_id: str, tenant: Tenant, payload: RequestInvokeSummary):
  205. """
  206. invoke summary
  207. """
  208. max_tokens = cls.get_system_model_max_tokens(tenant_id=tenant.id)
  209. content = payload.text
  210. SUMMARY_PROMPT = """You are a professional language researcher, you are interested in the language
  211. and you can quickly aimed at the main point of an webpage and reproduce it in your own words but
  212. retain the original meaning and keep the key points.
  213. however, the text you got is too long, what you got is possible a part of the text.
  214. Please summarize the text you got.
  215. Here is the extra instruction you need to follow:
  216. <extra_instruction>
  217. {payload.instruction}
  218. </extra_instruction>
  219. """
  220. if (
  221. cls.get_prompt_tokens(
  222. tenant_id=tenant.id,
  223. prompt_messages=[UserPromptMessage(content=content)],
  224. )
  225. < max_tokens * 0.6
  226. ):
  227. return content
  228. def get_prompt_tokens(content: str) -> int:
  229. return cls.get_prompt_tokens(
  230. tenant_id=tenant.id,
  231. prompt_messages=[
  232. SystemPromptMessage(content=SUMMARY_PROMPT.replace("{payload.instruction}", payload.instruction)),
  233. UserPromptMessage(content=content),
  234. ],
  235. )
  236. def summarize(content: str) -> str:
  237. summary = cls.invoke_system_model(
  238. user_id=user_id,
  239. tenant=tenant,
  240. prompt_messages=[
  241. SystemPromptMessage(content=SUMMARY_PROMPT.replace("{payload.instruction}", payload.instruction)),
  242. UserPromptMessage(content=content),
  243. ],
  244. )
  245. assert isinstance(summary.message.content, str)
  246. return summary.message.content
  247. lines = content.split("\n")
  248. new_lines: list[str] = []
  249. # split long line into multiple lines
  250. for i in range(len(lines)):
  251. line = lines[i]
  252. if not line.strip():
  253. continue
  254. if len(line) < max_tokens * 0.5:
  255. new_lines.append(line)
  256. elif get_prompt_tokens(line) > max_tokens * 0.7:
  257. while get_prompt_tokens(line) > max_tokens * 0.7:
  258. new_lines.append(line[: int(max_tokens * 0.5)])
  259. line = line[int(max_tokens * 0.5) :]
  260. new_lines.append(line)
  261. else:
  262. new_lines.append(line)
  263. # merge lines into messages with max tokens
  264. messages: list[str] = []
  265. for i in new_lines: # type: ignore
  266. if len(messages) == 0:
  267. messages.append(i) # type: ignore
  268. else:
  269. if len(messages[-1]) + len(i) < max_tokens * 0.5: # type: ignore
  270. messages[-1] += i # type: ignore
  271. if get_prompt_tokens(messages[-1] + i) > max_tokens * 0.7: # type: ignore
  272. messages.append(i) # type: ignore
  273. else:
  274. messages[-1] += i # type: ignore
  275. summaries = []
  276. for i in range(len(messages)):
  277. message = messages[i]
  278. summary = summarize(message)
  279. summaries.append(summary)
  280. result = "\n".join(summaries)
  281. if (
  282. cls.get_prompt_tokens(
  283. tenant_id=tenant.id,
  284. prompt_messages=[UserPromptMessage(content=result)],
  285. )
  286. > max_tokens * 0.7
  287. ):
  288. return cls.invoke_summary(
  289. user_id=user_id,
  290. tenant=tenant,
  291. payload=RequestInvokeSummary(text=result, instruction=payload.instruction),
  292. )
  293. return result