indexing_runner.py 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901
  1. import datetime
  2. import json
  3. import logging
  4. import re
  5. import threading
  6. import time
  7. import uuid
  8. from typing import AbstractSet, Any, Collection, List, Literal, Optional, Type, Union, cast
  9. from core.data_loader.file_extractor import FileExtractor
  10. from core.data_loader.loader.notion import NotionLoader
  11. from core.docstore.dataset_docstore import DatasetDocumentStore
  12. from core.errors.error import ProviderTokenNotInitError
  13. from core.generator.llm_generator import LLMGenerator
  14. from core.index.index import IndexBuilder
  15. from core.model_manager import ModelManager, ModelInstance
  16. from core.model_runtime.entities.model_entities import ModelType, PriceType
  17. from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
  18. from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
  19. from core.model_runtime.model_providers.__base.tokenizers.gpt2_tokenzier import GPT2Tokenizer
  20. from core.spiltter.fixed_text_splitter import EnhanceRecursiveCharacterTextSplitter, FixedRecursiveCharacterTextSplitter
  21. from extensions.ext_database import db
  22. from extensions.ext_redis import redis_client
  23. from extensions.ext_storage import storage
  24. from flask import Flask, current_app
  25. from flask_login import current_user
  26. from langchain.schema import Document
  27. from langchain.text_splitter import TS, TextSplitter, TokenTextSplitter
  28. from libs import helper
  29. from models.dataset import Dataset, DatasetProcessRule
  30. from models.dataset import Document as DatasetDocument
  31. from models.dataset import DocumentSegment
  32. from models.model import UploadFile
  33. from models.source import DataSourceBinding
  34. from sqlalchemy.orm.exc import ObjectDeletedError
  35. class IndexingRunner:
  36. def __init__(self):
  37. self.storage = storage
  38. self.model_manager = ModelManager()
  39. def run(self, dataset_documents: List[DatasetDocument]):
  40. """Run the indexing process."""
  41. for dataset_document in dataset_documents:
  42. try:
  43. # get dataset
  44. dataset = Dataset.query.filter_by(
  45. id=dataset_document.dataset_id
  46. ).first()
  47. if not dataset:
  48. raise ValueError("no dataset found")
  49. # get the process rule
  50. processing_rule = db.session.query(DatasetProcessRule). \
  51. filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
  52. first()
  53. # load file
  54. text_docs = self._load_data(dataset_document, processing_rule.mode == 'automatic')
  55. # get embedding model instance
  56. embedding_model_instance = None
  57. if dataset.indexing_technique == 'high_quality':
  58. if dataset.embedding_model_provider:
  59. embedding_model_instance = self.model_manager.get_model_instance(
  60. tenant_id=dataset.tenant_id,
  61. provider=dataset.embedding_model_provider,
  62. model_type=ModelType.TEXT_EMBEDDING,
  63. model=dataset.embedding_model
  64. )
  65. else:
  66. embedding_model_instance = self.model_manager.get_default_model_instance(
  67. tenant_id=dataset.tenant_id,
  68. model_type=ModelType.TEXT_EMBEDDING,
  69. )
  70. # get splitter
  71. splitter = self._get_splitter(processing_rule, embedding_model_instance)
  72. # split to documents
  73. documents = self._step_split(
  74. text_docs=text_docs,
  75. splitter=splitter,
  76. dataset=dataset,
  77. dataset_document=dataset_document,
  78. processing_rule=processing_rule
  79. )
  80. self._build_index(
  81. dataset=dataset,
  82. dataset_document=dataset_document,
  83. documents=documents
  84. )
  85. except DocumentIsPausedException:
  86. raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
  87. except ProviderTokenNotInitError as e:
  88. dataset_document.indexing_status = 'error'
  89. dataset_document.error = str(e.description)
  90. dataset_document.stopped_at = datetime.datetime.utcnow()
  91. db.session.commit()
  92. except ObjectDeletedError:
  93. logging.warning('Document deleted, document id: {}'.format(dataset_document.id))
  94. except Exception as e:
  95. logging.exception("consume document failed")
  96. dataset_document.indexing_status = 'error'
  97. dataset_document.error = str(e)
  98. dataset_document.stopped_at = datetime.datetime.utcnow()
  99. db.session.commit()
  100. def run_in_splitting_status(self, dataset_document: DatasetDocument):
  101. """Run the indexing process when the index_status is splitting."""
  102. try:
  103. # get dataset
  104. dataset = Dataset.query.filter_by(
  105. id=dataset_document.dataset_id
  106. ).first()
  107. if not dataset:
  108. raise ValueError("no dataset found")
  109. # get exist document_segment list and delete
  110. document_segments = DocumentSegment.query.filter_by(
  111. dataset_id=dataset.id,
  112. document_id=dataset_document.id
  113. ).all()
  114. for document_segment in document_segments:
  115. db.session.delete(document_segment)
  116. db.session.commit()
  117. # get the process rule
  118. processing_rule = db.session.query(DatasetProcessRule). \
  119. filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
  120. first()
  121. # load file
  122. text_docs = self._load_data(dataset_document, processing_rule.mode == 'automatic')
  123. # get embedding model instance
  124. embedding_model_instance = None
  125. if dataset.indexing_technique == 'high_quality':
  126. if dataset.embedding_model_provider:
  127. embedding_model_instance = self.model_manager.get_model_instance(
  128. tenant_id=dataset.tenant_id,
  129. provider=dataset.embedding_model_provider,
  130. model_type=ModelType.TEXT_EMBEDDING,
  131. model=dataset.embedding_model
  132. )
  133. else:
  134. embedding_model_instance = self.model_manager.get_default_model_instance(
  135. tenant_id=dataset.tenant_id,
  136. model_type=ModelType.TEXT_EMBEDDING,
  137. )
  138. # get splitter
  139. splitter = self._get_splitter(processing_rule, embedding_model_instance)
  140. # split to documents
  141. documents = self._step_split(
  142. text_docs=text_docs,
  143. splitter=splitter,
  144. dataset=dataset,
  145. dataset_document=dataset_document,
  146. processing_rule=processing_rule
  147. )
  148. # build index
  149. self._build_index(
  150. dataset=dataset,
  151. dataset_document=dataset_document,
  152. documents=documents
  153. )
  154. except DocumentIsPausedException:
  155. raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
  156. except ProviderTokenNotInitError as e:
  157. dataset_document.indexing_status = 'error'
  158. dataset_document.error = str(e.description)
  159. dataset_document.stopped_at = datetime.datetime.utcnow()
  160. db.session.commit()
  161. except Exception as e:
  162. logging.exception("consume document failed")
  163. dataset_document.indexing_status = 'error'
  164. dataset_document.error = str(e)
  165. dataset_document.stopped_at = datetime.datetime.utcnow()
  166. db.session.commit()
  167. def run_in_indexing_status(self, dataset_document: DatasetDocument):
  168. """Run the indexing process when the index_status is indexing."""
  169. try:
  170. # get dataset
  171. dataset = Dataset.query.filter_by(
  172. id=dataset_document.dataset_id
  173. ).first()
  174. if not dataset:
  175. raise ValueError("no dataset found")
  176. # get exist document_segment list and delete
  177. document_segments = DocumentSegment.query.filter_by(
  178. dataset_id=dataset.id,
  179. document_id=dataset_document.id
  180. ).all()
  181. documents = []
  182. if document_segments:
  183. for document_segment in document_segments:
  184. # transform segment to node
  185. if document_segment.status != "completed":
  186. document = Document(
  187. page_content=document_segment.content,
  188. metadata={
  189. "doc_id": document_segment.index_node_id,
  190. "doc_hash": document_segment.index_node_hash,
  191. "document_id": document_segment.document_id,
  192. "dataset_id": document_segment.dataset_id,
  193. }
  194. )
  195. documents.append(document)
  196. # build index
  197. self._build_index(
  198. dataset=dataset,
  199. dataset_document=dataset_document,
  200. documents=documents
  201. )
  202. except DocumentIsPausedException:
  203. raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
  204. except ProviderTokenNotInitError as e:
  205. dataset_document.indexing_status = 'error'
  206. dataset_document.error = str(e.description)
  207. dataset_document.stopped_at = datetime.datetime.utcnow()
  208. db.session.commit()
  209. except Exception as e:
  210. logging.exception("consume document failed")
  211. dataset_document.indexing_status = 'error'
  212. dataset_document.error = str(e)
  213. dataset_document.stopped_at = datetime.datetime.utcnow()
  214. db.session.commit()
  215. def file_indexing_estimate(self, tenant_id: str, file_details: List[UploadFile], tmp_processing_rule: dict,
  216. doc_form: str = None, doc_language: str = 'English', dataset_id: str = None,
  217. indexing_technique: str = 'economy') -> dict:
  218. """
  219. Estimate the indexing for the document.
  220. """
  221. embedding_model_instance = None
  222. if dataset_id:
  223. dataset = Dataset.query.filter_by(
  224. id=dataset_id
  225. ).first()
  226. if not dataset:
  227. raise ValueError('Dataset not found.')
  228. if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
  229. if dataset.embedding_model_provider:
  230. embedding_model_instance = self.model_manager.get_model_instance(
  231. tenant_id=tenant_id,
  232. provider=dataset.embedding_model_provider,
  233. model_type=ModelType.TEXT_EMBEDDING,
  234. model=dataset.embedding_model
  235. )
  236. else:
  237. embedding_model_instance = self.model_manager.get_default_model_instance(
  238. tenant_id=tenant_id,
  239. model_type=ModelType.TEXT_EMBEDDING,
  240. )
  241. else:
  242. if indexing_technique == 'high_quality':
  243. embedding_model_instance = self.model_manager.get_default_model_instance(
  244. tenant_id=tenant_id,
  245. model_type=ModelType.TEXT_EMBEDDING,
  246. )
  247. tokens = 0
  248. preview_texts = []
  249. total_segments = 0
  250. for file_detail in file_details:
  251. processing_rule = DatasetProcessRule(
  252. mode=tmp_processing_rule["mode"],
  253. rules=json.dumps(tmp_processing_rule["rules"])
  254. )
  255. # load data from file
  256. text_docs = FileExtractor.load(file_detail, is_automatic=processing_rule.mode == 'automatic')
  257. # get splitter
  258. splitter = self._get_splitter(processing_rule, embedding_model_instance)
  259. # split to documents
  260. documents = self._split_to_documents_for_estimate(
  261. text_docs=text_docs,
  262. splitter=splitter,
  263. processing_rule=processing_rule
  264. )
  265. total_segments += len(documents)
  266. for document in documents:
  267. if len(preview_texts) < 5:
  268. preview_texts.append(document.page_content)
  269. if indexing_technique == 'high_quality' or embedding_model_instance:
  270. embedding_model_type_instance = embedding_model_instance.model_type_instance
  271. embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
  272. tokens += embedding_model_type_instance.get_num_tokens(
  273. model=embedding_model_instance.model,
  274. credentials=embedding_model_instance.credentials,
  275. texts=[self.filter_string(document.page_content)]
  276. )
  277. if doc_form and doc_form == 'qa_model':
  278. model_instance = self.model_manager.get_default_model_instance(
  279. tenant_id=tenant_id,
  280. model_type=ModelType.LLM
  281. )
  282. model_type_instance = model_instance.model_type_instance
  283. model_type_instance = cast(LargeLanguageModel, model_type_instance)
  284. if len(preview_texts) > 0:
  285. # qa model document
  286. response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0],
  287. doc_language)
  288. document_qa_list = self.format_split_text(response)
  289. price_info = model_type_instance.get_price(
  290. model=model_instance.model,
  291. credentials=model_instance.credentials,
  292. price_type=PriceType.INPUT,
  293. tokens=total_segments * 2000,
  294. )
  295. return {
  296. "total_segments": total_segments * 20,
  297. "tokens": total_segments * 2000,
  298. "total_price": '{:f}'.format(price_info.total_amount),
  299. "currency": price_info.currency,
  300. "qa_preview": document_qa_list,
  301. "preview": preview_texts
  302. }
  303. if embedding_model_instance:
  304. embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_instance.model_type_instance)
  305. embedding_price_info = embedding_model_type_instance.get_price(
  306. model=embedding_model_instance.model,
  307. credentials=embedding_model_instance.credentials,
  308. price_type=PriceType.INPUT,
  309. tokens=tokens
  310. )
  311. return {
  312. "total_segments": total_segments,
  313. "tokens": tokens,
  314. "total_price": '{:f}'.format(embedding_price_info.total_amount) if embedding_model_instance else 0,
  315. "currency": embedding_price_info.currency if embedding_model_instance else 'USD',
  316. "preview": preview_texts
  317. }
  318. def notion_indexing_estimate(self, tenant_id: str, notion_info_list: list, tmp_processing_rule: dict,
  319. doc_form: str = None, doc_language: str = 'English', dataset_id: str = None,
  320. indexing_technique: str = 'economy') -> dict:
  321. """
  322. Estimate the indexing for the document.
  323. """
  324. embedding_model_instance = None
  325. if dataset_id:
  326. dataset = Dataset.query.filter_by(
  327. id=dataset_id
  328. ).first()
  329. if not dataset:
  330. raise ValueError('Dataset not found.')
  331. if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
  332. if dataset.embedding_model_provider:
  333. embedding_model_instance = self.model_manager.get_model_instance(
  334. tenant_id=tenant_id,
  335. provider=dataset.embedding_model_provider,
  336. model_type=ModelType.TEXT_EMBEDDING,
  337. model=dataset.embedding_model
  338. )
  339. else:
  340. embedding_model_instance = self.model_manager.get_default_model_instance(
  341. tenant_id=tenant_id,
  342. model_type=ModelType.TEXT_EMBEDDING,
  343. )
  344. else:
  345. if indexing_technique == 'high_quality':
  346. embedding_model_instance = self.model_manager.get_default_model_instance(
  347. tenant_id=tenant_id,
  348. model_type=ModelType.TEXT_EMBEDDING
  349. )
  350. # load data from notion
  351. tokens = 0
  352. preview_texts = []
  353. total_segments = 0
  354. for notion_info in notion_info_list:
  355. workspace_id = notion_info['workspace_id']
  356. data_source_binding = DataSourceBinding.query.filter(
  357. db.and_(
  358. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  359. DataSourceBinding.provider == 'notion',
  360. DataSourceBinding.disabled == False,
  361. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  362. )
  363. ).first()
  364. if not data_source_binding:
  365. raise ValueError('Data source binding not found.')
  366. for page in notion_info['pages']:
  367. loader = NotionLoader(
  368. notion_access_token=data_source_binding.access_token,
  369. notion_workspace_id=workspace_id,
  370. notion_obj_id=page['page_id'],
  371. notion_page_type=page['type']
  372. )
  373. documents = loader.load()
  374. processing_rule = DatasetProcessRule(
  375. mode=tmp_processing_rule["mode"],
  376. rules=json.dumps(tmp_processing_rule["rules"])
  377. )
  378. # get splitter
  379. splitter = self._get_splitter(processing_rule, embedding_model_instance)
  380. # split to documents
  381. documents = self._split_to_documents_for_estimate(
  382. text_docs=documents,
  383. splitter=splitter,
  384. processing_rule=processing_rule
  385. )
  386. total_segments += len(documents)
  387. embedding_model_type_instance = None
  388. if embedding_model_instance:
  389. embedding_model_type_instance = embedding_model_instance.model_type_instance
  390. embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
  391. for document in documents:
  392. if len(preview_texts) < 5:
  393. preview_texts.append(document.page_content)
  394. if indexing_technique == 'high_quality' and embedding_model_type_instance:
  395. tokens += embedding_model_type_instance.get_num_tokens(
  396. model=embedding_model_instance.model,
  397. credentials=embedding_model_instance.credentials,
  398. texts=[document.page_content]
  399. )
  400. if doc_form and doc_form == 'qa_model':
  401. model_instance = self.model_manager.get_default_model_instance(
  402. tenant_id=tenant_id,
  403. model_type=ModelType.LLM
  404. )
  405. model_type_instance = model_instance.model_type_instance
  406. model_type_instance = cast(LargeLanguageModel, model_type_instance)
  407. if len(preview_texts) > 0:
  408. # qa model document
  409. response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0],
  410. doc_language)
  411. document_qa_list = self.format_split_text(response)
  412. price_info = model_type_instance.get_price(
  413. model=model_instance.model,
  414. credentials=model_instance.credentials,
  415. price_type=PriceType.INPUT,
  416. tokens=total_segments * 2000,
  417. )
  418. return {
  419. "total_segments": total_segments * 20,
  420. "tokens": total_segments * 2000,
  421. "total_price": '{:f}'.format(price_info.total_amount),
  422. "currency": price_info.currency,
  423. "qa_preview": document_qa_list,
  424. "preview": preview_texts
  425. }
  426. embedding_model_type_instance = embedding_model_instance.model_type_instance
  427. embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
  428. embedding_price_info = embedding_model_type_instance.get_price(
  429. model=embedding_model_instance.model,
  430. credentials=embedding_model_instance.credentials,
  431. price_type=PriceType.INPUT,
  432. tokens=tokens
  433. )
  434. return {
  435. "total_segments": total_segments,
  436. "tokens": tokens,
  437. "total_price": '{:f}'.format(embedding_price_info.total_amount) if embedding_model_instance else 0,
  438. "currency": embedding_price_info.currency if embedding_model_instance else 'USD',
  439. "preview": preview_texts
  440. }
  441. def _load_data(self, dataset_document: DatasetDocument, automatic: bool = False) -> List[Document]:
  442. # load file
  443. if dataset_document.data_source_type not in ["upload_file", "notion_import"]:
  444. return []
  445. data_source_info = dataset_document.data_source_info_dict
  446. text_docs = []
  447. if dataset_document.data_source_type == 'upload_file':
  448. if not data_source_info or 'upload_file_id' not in data_source_info:
  449. raise ValueError("no upload file found")
  450. file_detail = db.session.query(UploadFile). \
  451. filter(UploadFile.id == data_source_info['upload_file_id']). \
  452. one_or_none()
  453. if file_detail:
  454. text_docs = FileExtractor.load(file_detail, is_automatic=automatic)
  455. elif dataset_document.data_source_type == 'notion_import':
  456. loader = NotionLoader.from_document(dataset_document)
  457. text_docs = loader.load()
  458. # update document status to splitting
  459. self._update_document_index_status(
  460. document_id=dataset_document.id,
  461. after_indexing_status="splitting",
  462. extra_update_params={
  463. DatasetDocument.word_count: sum([len(text_doc.page_content) for text_doc in text_docs]),
  464. DatasetDocument.parsing_completed_at: datetime.datetime.utcnow()
  465. }
  466. )
  467. # replace doc id to document model id
  468. text_docs = cast(List[Document], text_docs)
  469. for text_doc in text_docs:
  470. # remove invalid symbol
  471. text_doc.page_content = self.filter_string(text_doc.page_content)
  472. text_doc.metadata['document_id'] = dataset_document.id
  473. text_doc.metadata['dataset_id'] = dataset_document.dataset_id
  474. return text_docs
  475. def filter_string(self, text):
  476. text = re.sub(r'<\|', '<', text)
  477. text = re.sub(r'\|>', '>', text)
  478. text = re.sub(r'[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\x80-\xFF]', '', text)
  479. return text
  480. def _get_splitter(self, processing_rule: DatasetProcessRule,
  481. embedding_model_instance: Optional[ModelInstance]) -> TextSplitter:
  482. """
  483. Get the NodeParser object according to the processing rule.
  484. """
  485. if processing_rule.mode == "custom":
  486. # The user-defined segmentation rule
  487. rules = json.loads(processing_rule.rules)
  488. segmentation = rules["segmentation"]
  489. if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > 1000:
  490. raise ValueError("Custom segment length should be between 50 and 1000.")
  491. separator = segmentation["separator"]
  492. if separator:
  493. separator = separator.replace('\\n', '\n')
  494. character_splitter = FixedRecursiveCharacterTextSplitter.from_encoder(
  495. chunk_size=segmentation["max_tokens"],
  496. chunk_overlap=0,
  497. fixed_separator=separator,
  498. separators=["\n\n", "。", ".", " ", ""],
  499. embedding_model_instance=embedding_model_instance
  500. )
  501. else:
  502. # Automatic segmentation
  503. character_splitter = EnhanceRecursiveCharacterTextSplitter.from_encoder(
  504. chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
  505. chunk_overlap=0,
  506. separators=["\n\n", "。", ".", " ", ""],
  507. embedding_model_instance=embedding_model_instance
  508. )
  509. return character_splitter
  510. def _step_split(self, text_docs: List[Document], splitter: TextSplitter,
  511. dataset: Dataset, dataset_document: DatasetDocument, processing_rule: DatasetProcessRule) \
  512. -> List[Document]:
  513. """
  514. Split the text documents into documents and save them to the document segment.
  515. """
  516. documents = self._split_to_documents(
  517. text_docs=text_docs,
  518. splitter=splitter,
  519. processing_rule=processing_rule,
  520. tenant_id=dataset.tenant_id,
  521. document_form=dataset_document.doc_form,
  522. document_language=dataset_document.doc_language
  523. )
  524. # save node to document segment
  525. doc_store = DatasetDocumentStore(
  526. dataset=dataset,
  527. user_id=dataset_document.created_by,
  528. document_id=dataset_document.id
  529. )
  530. # add document segments
  531. doc_store.add_documents(documents)
  532. # update document status to indexing
  533. cur_time = datetime.datetime.utcnow()
  534. self._update_document_index_status(
  535. document_id=dataset_document.id,
  536. after_indexing_status="indexing",
  537. extra_update_params={
  538. DatasetDocument.cleaning_completed_at: cur_time,
  539. DatasetDocument.splitting_completed_at: cur_time,
  540. }
  541. )
  542. # update segment status to indexing
  543. self._update_segments_by_document(
  544. dataset_document_id=dataset_document.id,
  545. update_params={
  546. DocumentSegment.status: "indexing",
  547. DocumentSegment.indexing_at: datetime.datetime.utcnow()
  548. }
  549. )
  550. return documents
  551. def _split_to_documents(self, text_docs: List[Document], splitter: TextSplitter,
  552. processing_rule: DatasetProcessRule, tenant_id: str,
  553. document_form: str, document_language: str) -> List[Document]:
  554. """
  555. Split the text documents into nodes.
  556. """
  557. all_documents = []
  558. all_qa_documents = []
  559. for text_doc in text_docs:
  560. # document clean
  561. document_text = self._document_clean(text_doc.page_content, processing_rule)
  562. text_doc.page_content = document_text
  563. # parse document to nodes
  564. documents = splitter.split_documents([text_doc])
  565. split_documents = []
  566. for document_node in documents:
  567. if document_node.page_content.strip():
  568. doc_id = str(uuid.uuid4())
  569. hash = helper.generate_text_hash(document_node.page_content)
  570. document_node.metadata['doc_id'] = doc_id
  571. document_node.metadata['doc_hash'] = hash
  572. # delete Spliter character
  573. page_content = document_node.page_content
  574. if page_content.startswith(".") or page_content.startswith("。"):
  575. page_content = page_content[1:]
  576. else:
  577. page_content = page_content
  578. document_node.page_content = page_content
  579. split_documents.append(document_node)
  580. all_documents.extend(split_documents)
  581. # processing qa document
  582. if document_form == 'qa_model':
  583. for i in range(0, len(all_documents), 10):
  584. threads = []
  585. sub_documents = all_documents[i:i + 10]
  586. for doc in sub_documents:
  587. document_format_thread = threading.Thread(target=self.format_qa_document, kwargs={
  588. 'flask_app': current_app._get_current_object(),
  589. 'tenant_id': tenant_id, 'document_node': doc, 'all_qa_documents': all_qa_documents,
  590. 'document_language': document_language})
  591. threads.append(document_format_thread)
  592. document_format_thread.start()
  593. for thread in threads:
  594. thread.join()
  595. return all_qa_documents
  596. return all_documents
  597. def format_qa_document(self, flask_app: Flask, tenant_id: str, document_node, all_qa_documents, document_language):
  598. format_documents = []
  599. if document_node.page_content is None or not document_node.page_content.strip():
  600. return
  601. with flask_app.app_context():
  602. try:
  603. # qa model document
  604. response = LLMGenerator.generate_qa_document(tenant_id, document_node.page_content, document_language)
  605. document_qa_list = self.format_split_text(response)
  606. qa_documents = []
  607. for result in document_qa_list:
  608. qa_document = Document(page_content=result['question'], metadata=document_node.metadata.copy())
  609. doc_id = str(uuid.uuid4())
  610. hash = helper.generate_text_hash(result['question'])
  611. qa_document.metadata['answer'] = result['answer']
  612. qa_document.metadata['doc_id'] = doc_id
  613. qa_document.metadata['doc_hash'] = hash
  614. qa_documents.append(qa_document)
  615. format_documents.extend(qa_documents)
  616. except Exception as e:
  617. logging.exception(e)
  618. all_qa_documents.extend(format_documents)
  619. def _split_to_documents_for_estimate(self, text_docs: List[Document], splitter: TextSplitter,
  620. processing_rule: DatasetProcessRule) -> List[Document]:
  621. """
  622. Split the text documents into nodes.
  623. """
  624. all_documents = []
  625. for text_doc in text_docs:
  626. # document clean
  627. document_text = self._document_clean(text_doc.page_content, processing_rule)
  628. text_doc.page_content = document_text
  629. # parse document to nodes
  630. documents = splitter.split_documents([text_doc])
  631. split_documents = []
  632. for document in documents:
  633. if document.page_content is None or not document.page_content.strip():
  634. continue
  635. doc_id = str(uuid.uuid4())
  636. hash = helper.generate_text_hash(document.page_content)
  637. document.metadata['doc_id'] = doc_id
  638. document.metadata['doc_hash'] = hash
  639. split_documents.append(document)
  640. all_documents.extend(split_documents)
  641. return all_documents
  642. def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str:
  643. """
  644. Clean the document text according to the processing rules.
  645. """
  646. if processing_rule.mode == "automatic":
  647. rules = DatasetProcessRule.AUTOMATIC_RULES
  648. else:
  649. rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
  650. if 'pre_processing_rules' in rules:
  651. pre_processing_rules = rules["pre_processing_rules"]
  652. for pre_processing_rule in pre_processing_rules:
  653. if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True:
  654. # Remove extra spaces
  655. pattern = r'\n{3,}'
  656. text = re.sub(pattern, '\n\n', text)
  657. pattern = r'[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}'
  658. text = re.sub(pattern, ' ', text)
  659. elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True:
  660. # Remove email
  661. pattern = r'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)'
  662. text = re.sub(pattern, '', text)
  663. # Remove URL
  664. pattern = r'https?://[^\s]+'
  665. text = re.sub(pattern, '', text)
  666. return text
  667. def format_split_text(self, text):
  668. regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q\d+:|$)"
  669. matches = re.findall(regex, text, re.UNICODE)
  670. return [
  671. {
  672. "question": q,
  673. "answer": re.sub(r"\n\s*", "\n", a.strip())
  674. }
  675. for q, a in matches if q and a
  676. ]
  677. def _build_index(self, dataset: Dataset, dataset_document: DatasetDocument, documents: List[Document]) -> None:
  678. """
  679. Build the index for the document.
  680. """
  681. vector_index = IndexBuilder.get_index(dataset, 'high_quality')
  682. keyword_table_index = IndexBuilder.get_index(dataset, 'economy')
  683. embedding_model_instance = None
  684. if dataset.indexing_technique == 'high_quality':
  685. embedding_model_instance = self.model_manager.get_model_instance(
  686. tenant_id=dataset.tenant_id,
  687. provider=dataset.embedding_model_provider,
  688. model_type=ModelType.TEXT_EMBEDDING,
  689. model=dataset.embedding_model
  690. )
  691. # chunk nodes by chunk size
  692. indexing_start_at = time.perf_counter()
  693. tokens = 0
  694. chunk_size = 100
  695. embedding_model_type_instance = None
  696. if embedding_model_instance:
  697. embedding_model_type_instance = embedding_model_instance.model_type_instance
  698. embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
  699. for i in range(0, len(documents), chunk_size):
  700. # check document is paused
  701. self._check_document_paused_status(dataset_document.id)
  702. chunk_documents = documents[i:i + chunk_size]
  703. if dataset.indexing_technique == 'high_quality' or embedding_model_type_instance:
  704. tokens += sum(
  705. embedding_model_type_instance.get_num_tokens(
  706. embedding_model_instance.model,
  707. embedding_model_instance.credentials,
  708. [document.page_content]
  709. )
  710. for document in chunk_documents
  711. )
  712. # save vector index
  713. if vector_index:
  714. vector_index.add_texts(chunk_documents)
  715. # save keyword index
  716. keyword_table_index.add_texts(chunk_documents)
  717. document_ids = [document.metadata['doc_id'] for document in chunk_documents]
  718. db.session.query(DocumentSegment).filter(
  719. DocumentSegment.document_id == dataset_document.id,
  720. DocumentSegment.index_node_id.in_(document_ids),
  721. DocumentSegment.status == "indexing"
  722. ).update({
  723. DocumentSegment.status: "completed",
  724. DocumentSegment.enabled: True,
  725. DocumentSegment.completed_at: datetime.datetime.utcnow()
  726. })
  727. db.session.commit()
  728. indexing_end_at = time.perf_counter()
  729. # update document status to completed
  730. self._update_document_index_status(
  731. document_id=dataset_document.id,
  732. after_indexing_status="completed",
  733. extra_update_params={
  734. DatasetDocument.tokens: tokens,
  735. DatasetDocument.completed_at: datetime.datetime.utcnow(),
  736. DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
  737. }
  738. )
  739. def _check_document_paused_status(self, document_id: str):
  740. indexing_cache_key = 'document_{}_is_paused'.format(document_id)
  741. result = redis_client.get(indexing_cache_key)
  742. if result:
  743. raise DocumentIsPausedException()
  744. def _update_document_index_status(self, document_id: str, after_indexing_status: str,
  745. extra_update_params: Optional[dict] = None) -> None:
  746. """
  747. Update the document indexing status.
  748. """
  749. count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count()
  750. if count > 0:
  751. raise DocumentIsPausedException()
  752. document = DatasetDocument.query.filter_by(id=document_id).first()
  753. if not document:
  754. raise DocumentIsDeletedPausedException()
  755. update_params = {
  756. DatasetDocument.indexing_status: after_indexing_status
  757. }
  758. if extra_update_params:
  759. update_params.update(extra_update_params)
  760. DatasetDocument.query.filter_by(id=document_id).update(update_params)
  761. db.session.commit()
  762. def _update_segments_by_document(self, dataset_document_id: str, update_params: dict) -> None:
  763. """
  764. Update the document segment by document id.
  765. """
  766. DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params)
  767. db.session.commit()
  768. def batch_add_segments(self, segments: List[DocumentSegment], dataset: Dataset):
  769. """
  770. Batch add segments index processing
  771. """
  772. documents = []
  773. for segment in segments:
  774. document = Document(
  775. page_content=segment.content,
  776. metadata={
  777. "doc_id": segment.index_node_id,
  778. "doc_hash": segment.index_node_hash,
  779. "document_id": segment.document_id,
  780. "dataset_id": segment.dataset_id,
  781. }
  782. )
  783. documents.append(document)
  784. # save vector index
  785. index = IndexBuilder.get_index(dataset, 'high_quality')
  786. if index:
  787. index.add_texts(documents, duplicate_check=True)
  788. # save keyword index
  789. index = IndexBuilder.get_index(dataset, 'economy')
  790. if index:
  791. index.add_texts(documents)
  792. class DocumentIsPausedException(Exception):
  793. pass
  794. class DocumentIsDeletedPausedException(Exception):
  795. pass