document.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405
  1. import json
  2. from flask import request
  3. from flask_restful import marshal, reqparse # type: ignore
  4. from sqlalchemy import desc
  5. from werkzeug.exceptions import NotFound
  6. import services.dataset_service
  7. from controllers.common.errors import FilenameNotExistsError
  8. from controllers.service_api import api
  9. from controllers.service_api.app.error import (
  10. FileTooLargeError,
  11. NoFileUploadedError,
  12. ProviderNotInitializeError,
  13. TooManyFilesError,
  14. UnsupportedFileTypeError,
  15. )
  16. from controllers.service_api.dataset.error import (
  17. ArchivedDocumentImmutableError,
  18. DocumentIndexingError,
  19. )
  20. from controllers.service_api.wraps import DatasetApiResource, cloud_edition_billing_resource_check
  21. from core.errors.error import ProviderTokenNotInitError
  22. from extensions.ext_database import db
  23. from fields.document_fields import document_fields, document_status_fields
  24. from libs.login import current_user
  25. from models.dataset import Dataset, Document, DocumentSegment
  26. from services.dataset_service import DocumentService
  27. from services.entities.knowledge_entities.knowledge_entities import KnowledgeConfig
  28. from services.file_service import FileService
  29. class DocumentAddByTextApi(DatasetApiResource):
  30. """Resource for documents."""
  31. @cloud_edition_billing_resource_check("vector_space", "dataset")
  32. @cloud_edition_billing_resource_check("documents", "dataset")
  33. def post(self, tenant_id, dataset_id):
  34. """Create document by text."""
  35. parser = reqparse.RequestParser()
  36. parser.add_argument("name", type=str, required=True, nullable=False, location="json")
  37. parser.add_argument("text", type=str, required=True, nullable=False, location="json")
  38. parser.add_argument("process_rule", type=dict, required=False, nullable=True, location="json")
  39. parser.add_argument("original_document_id", type=str, required=False, location="json")
  40. parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
  41. parser.add_argument(
  42. "doc_language", type=str, default="English", required=False, nullable=False, location="json"
  43. )
  44. parser.add_argument(
  45. "indexing_technique", type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, nullable=False, location="json"
  46. )
  47. parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
  48. args = parser.parse_args()
  49. dataset_id = str(dataset_id)
  50. tenant_id = str(tenant_id)
  51. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  52. if not dataset:
  53. raise ValueError("Dataset is not exist.")
  54. if not dataset.indexing_technique and not args["indexing_technique"]:
  55. raise ValueError("indexing_technique is required.")
  56. text = args.get("text")
  57. name = args.get("name")
  58. if text is None or name is None:
  59. raise ValueError("Both 'text' and 'name' must be non-null values.")
  60. upload_file = FileService.upload_text(text=str(text), text_name=str(name))
  61. data_source = {
  62. "type": "upload_file",
  63. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  64. }
  65. args["data_source"] = data_source
  66. knowledge_config = KnowledgeConfig(**args)
  67. # validate args
  68. DocumentService.document_create_args_validate(knowledge_config)
  69. try:
  70. documents, batch = DocumentService.save_document_with_dataset_id(
  71. dataset=dataset,
  72. knowledge_config=knowledge_config,
  73. account=current_user,
  74. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  75. created_from="api",
  76. )
  77. except ProviderTokenNotInitError as ex:
  78. raise ProviderNotInitializeError(ex.description)
  79. document = documents[0]
  80. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
  81. return documents_and_batch_fields, 200
  82. class DocumentUpdateByTextApi(DatasetApiResource):
  83. """Resource for update documents."""
  84. @cloud_edition_billing_resource_check("vector_space", "dataset")
  85. def post(self, tenant_id, dataset_id, document_id):
  86. """Update document by text."""
  87. parser = reqparse.RequestParser()
  88. parser.add_argument("name", type=str, required=False, nullable=True, location="json")
  89. parser.add_argument("text", type=str, required=False, nullable=True, location="json")
  90. parser.add_argument("process_rule", type=dict, required=False, nullable=True, location="json")
  91. parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
  92. parser.add_argument(
  93. "doc_language", type=str, default="English", required=False, nullable=False, location="json"
  94. )
  95. parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
  96. args = parser.parse_args()
  97. dataset_id = str(dataset_id)
  98. tenant_id = str(tenant_id)
  99. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  100. if not dataset:
  101. raise ValueError("Dataset is not exist.")
  102. if args["text"]:
  103. text = args.get("text")
  104. name = args.get("name")
  105. if text is None or name is None:
  106. raise ValueError("Both text and name must be strings.")
  107. upload_file = FileService.upload_text(text=str(text), text_name=str(name))
  108. data_source = {
  109. "type": "upload_file",
  110. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  111. }
  112. args["data_source"] = data_source
  113. # validate args
  114. args["original_document_id"] = str(document_id)
  115. knowledge_config = KnowledgeConfig(**args)
  116. DocumentService.document_create_args_validate(knowledge_config)
  117. try:
  118. documents, batch = DocumentService.save_document_with_dataset_id(
  119. dataset=dataset,
  120. knowledge_config=knowledge_config,
  121. account=current_user,
  122. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  123. created_from="api",
  124. )
  125. except ProviderTokenNotInitError as ex:
  126. raise ProviderNotInitializeError(ex.description)
  127. document = documents[0]
  128. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
  129. return documents_and_batch_fields, 200
  130. class DocumentAddByFileApi(DatasetApiResource):
  131. """Resource for documents."""
  132. @cloud_edition_billing_resource_check("vector_space", "dataset")
  133. @cloud_edition_billing_resource_check("documents", "dataset")
  134. def post(self, tenant_id, dataset_id):
  135. """Create document by upload file."""
  136. args = {}
  137. if "data" in request.form:
  138. args = json.loads(request.form["data"])
  139. if "doc_form" not in args:
  140. args["doc_form"] = "text_model"
  141. if "doc_language" not in args:
  142. args["doc_language"] = "English"
  143. # get dataset info
  144. dataset_id = str(dataset_id)
  145. tenant_id = str(tenant_id)
  146. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  147. if not dataset:
  148. raise ValueError("Dataset is not exist.")
  149. if not dataset.indexing_technique and not args.get("indexing_technique"):
  150. raise ValueError("indexing_technique is required.")
  151. # save file info
  152. file = request.files["file"]
  153. # check file
  154. if "file" not in request.files:
  155. raise NoFileUploadedError()
  156. if len(request.files) > 1:
  157. raise TooManyFilesError()
  158. if not file.filename:
  159. raise FilenameNotExistsError
  160. upload_file = FileService.upload_file(
  161. filename=file.filename,
  162. content=file.read(),
  163. mimetype=file.mimetype,
  164. user=current_user,
  165. source="datasets",
  166. )
  167. data_source = {
  168. "type": "upload_file",
  169. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  170. }
  171. args["data_source"] = data_source
  172. # validate args
  173. knowledge_config = KnowledgeConfig(**args)
  174. DocumentService.document_create_args_validate(knowledge_config)
  175. try:
  176. documents, batch = DocumentService.save_document_with_dataset_id(
  177. dataset=dataset,
  178. knowledge_config=knowledge_config,
  179. account=dataset.created_by_account,
  180. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  181. created_from="api",
  182. )
  183. except ProviderTokenNotInitError as ex:
  184. raise ProviderNotInitializeError(ex.description)
  185. document = documents[0]
  186. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
  187. return documents_and_batch_fields, 200
  188. class DocumentUpdateByFileApi(DatasetApiResource):
  189. """Resource for update documents."""
  190. @cloud_edition_billing_resource_check("vector_space", "dataset")
  191. def post(self, tenant_id, dataset_id, document_id):
  192. """Update document by upload file."""
  193. args = {}
  194. if "data" in request.form:
  195. args = json.loads(request.form["data"])
  196. if "doc_form" not in args:
  197. args["doc_form"] = "text_model"
  198. if "doc_language" not in args:
  199. args["doc_language"] = "English"
  200. # get dataset info
  201. dataset_id = str(dataset_id)
  202. tenant_id = str(tenant_id)
  203. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  204. if not dataset:
  205. raise ValueError("Dataset is not exist.")
  206. if "file" in request.files:
  207. # save file info
  208. file = request.files["file"]
  209. if len(request.files) > 1:
  210. raise TooManyFilesError()
  211. if not file.filename:
  212. raise FilenameNotExistsError
  213. try:
  214. upload_file = FileService.upload_file(
  215. filename=file.filename,
  216. content=file.read(),
  217. mimetype=file.mimetype,
  218. user=current_user,
  219. source="datasets",
  220. )
  221. except services.errors.file.FileTooLargeError as file_too_large_error:
  222. raise FileTooLargeError(file_too_large_error.description)
  223. except services.errors.file.UnsupportedFileTypeError:
  224. raise UnsupportedFileTypeError()
  225. data_source = {
  226. "type": "upload_file",
  227. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  228. }
  229. args["data_source"] = data_source
  230. # validate args
  231. args["original_document_id"] = str(document_id)
  232. knowledge_config = KnowledgeConfig(**args)
  233. DocumentService.document_create_args_validate(knowledge_config)
  234. try:
  235. documents, batch = DocumentService.save_document_with_dataset_id(
  236. dataset=dataset,
  237. knowledge_config=knowledge_config,
  238. account=dataset.created_by_account,
  239. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  240. created_from="api",
  241. )
  242. except ProviderTokenNotInitError as ex:
  243. raise ProviderNotInitializeError(ex.description)
  244. document = documents[0]
  245. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": document.batch}
  246. return documents_and_batch_fields, 200
  247. class DocumentDeleteApi(DatasetApiResource):
  248. def delete(self, tenant_id, dataset_id, document_id):
  249. """Delete document."""
  250. document_id = str(document_id)
  251. dataset_id = str(dataset_id)
  252. tenant_id = str(tenant_id)
  253. # get dataset info
  254. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  255. if not dataset:
  256. raise ValueError("Dataset is not exist.")
  257. document = DocumentService.get_document(dataset.id, document_id)
  258. # 404 if document not found
  259. if document is None:
  260. raise NotFound("Document Not Exists.")
  261. # 403 if document is archived
  262. if DocumentService.check_archived(document):
  263. raise ArchivedDocumentImmutableError()
  264. try:
  265. # delete document
  266. DocumentService.delete_document(document)
  267. except services.errors.document.DocumentIndexingError:
  268. raise DocumentIndexingError("Cannot delete document during indexing.")
  269. return {"result": "success"}, 200
  270. class DocumentListApi(DatasetApiResource):
  271. def get(self, tenant_id, dataset_id):
  272. dataset_id = str(dataset_id)
  273. tenant_id = str(tenant_id)
  274. page = request.args.get("page", default=1, type=int)
  275. limit = request.args.get("limit", default=20, type=int)
  276. search = request.args.get("keyword", default=None, type=str)
  277. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  278. if not dataset:
  279. raise NotFound("Dataset not found.")
  280. query = Document.query.filter_by(dataset_id=str(dataset_id), tenant_id=tenant_id)
  281. if search:
  282. search = f"%{search}%"
  283. query = query.filter(Document.name.like(search))
  284. query = query.order_by(desc(Document.created_at))
  285. paginated_documents = query.paginate(page=page, per_page=limit, max_per_page=100, error_out=False)
  286. documents = paginated_documents.items
  287. response = {
  288. "data": marshal(documents, document_fields),
  289. "has_more": len(documents) == limit,
  290. "limit": limit,
  291. "total": paginated_documents.total,
  292. "page": page,
  293. }
  294. return response
  295. class DocumentIndexingStatusApi(DatasetApiResource):
  296. def get(self, tenant_id, dataset_id, batch):
  297. dataset_id = str(dataset_id)
  298. batch = str(batch)
  299. tenant_id = str(tenant_id)
  300. # get dataset
  301. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  302. if not dataset:
  303. raise NotFound("Dataset not found.")
  304. # get documents
  305. documents = DocumentService.get_batch_documents(dataset_id, batch)
  306. if not documents:
  307. raise NotFound("Documents not found.")
  308. documents_status = []
  309. for document in documents:
  310. completed_segments = DocumentSegment.query.filter(
  311. DocumentSegment.completed_at.isnot(None),
  312. DocumentSegment.document_id == str(document.id),
  313. DocumentSegment.status != "re_segment",
  314. ).count()
  315. total_segments = DocumentSegment.query.filter(
  316. DocumentSegment.document_id == str(document.id), DocumentSegment.status != "re_segment"
  317. ).count()
  318. document.completed_segments = completed_segments
  319. document.total_segments = total_segments
  320. if document.is_paused:
  321. document.indexing_status = "paused"
  322. documents_status.append(marshal(document, document_status_fields))
  323. data = {"data": documents_status}
  324. return data
  325. api.add_resource(
  326. DocumentAddByTextApi,
  327. "/datasets/<uuid:dataset_id>/document/create_by_text",
  328. "/datasets/<uuid:dataset_id>/document/create-by-text",
  329. )
  330. api.add_resource(
  331. DocumentAddByFileApi,
  332. "/datasets/<uuid:dataset_id>/document/create_by_file",
  333. "/datasets/<uuid:dataset_id>/document/create-by-file",
  334. )
  335. api.add_resource(
  336. DocumentUpdateByTextApi,
  337. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update_by_text",
  338. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update-by-text",
  339. )
  340. api.add_resource(
  341. DocumentUpdateByFileApi,
  342. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update_by_file",
  343. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update-by-file",
  344. )
  345. api.add_resource(DocumentDeleteApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>")
  346. api.add_resource(DocumentListApi, "/datasets/<uuid:dataset_id>/documents")
  347. api.add_resource(DocumentIndexingStatusApi, "/datasets/<uuid:dataset_id>/documents/<string:batch>/indexing-status")