indexing_runner.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467
  1. import datetime
  2. import json
  3. import re
  4. import tempfile
  5. import time
  6. from pathlib import Path
  7. from typing import Optional, List
  8. from langchain.text_splitter import RecursiveCharacterTextSplitter
  9. from llama_index import SimpleDirectoryReader
  10. from llama_index.data_structs import Node
  11. from llama_index.data_structs.node_v2 import DocumentRelationship
  12. from llama_index.node_parser import SimpleNodeParser, NodeParser
  13. from llama_index.readers.file.base import DEFAULT_FILE_EXTRACTOR
  14. from llama_index.readers.file.markdown_parser import MarkdownParser
  15. from core.docstore.dataset_docstore import DatesetDocumentStore
  16. from core.index.keyword_table_index import KeywordTableIndex
  17. from core.index.readers.html_parser import HTMLParser
  18. from core.index.readers.pdf_parser import PDFParser
  19. from core.index.vector_index import VectorIndex
  20. from core.llm.token_calculator import TokenCalculator
  21. from extensions.ext_database import db
  22. from extensions.ext_redis import redis_client
  23. from extensions.ext_storage import storage
  24. from models.dataset import Document, Dataset, DocumentSegment, DatasetProcessRule
  25. from models.model import UploadFile
  26. class IndexingRunner:
  27. def __init__(self, embedding_model_name: str = "text-embedding-ada-002"):
  28. self.storage = storage
  29. self.embedding_model_name = embedding_model_name
  30. def run(self, document: Document):
  31. """Run the indexing process."""
  32. # get dataset
  33. dataset = Dataset.query.filter_by(
  34. id=document.dataset_id
  35. ).first()
  36. if not dataset:
  37. raise ValueError("no dataset found")
  38. # load file
  39. text_docs = self._load_data(document)
  40. # get the process rule
  41. processing_rule = db.session.query(DatasetProcessRule). \
  42. filter(DatasetProcessRule.id == document.dataset_process_rule_id). \
  43. first()
  44. # get node parser for splitting
  45. node_parser = self._get_node_parser(processing_rule)
  46. # split to nodes
  47. nodes = self._step_split(
  48. text_docs=text_docs,
  49. node_parser=node_parser,
  50. dataset=dataset,
  51. document=document,
  52. processing_rule=processing_rule
  53. )
  54. # build index
  55. self._build_index(
  56. dataset=dataset,
  57. document=document,
  58. nodes=nodes
  59. )
  60. def run_in_splitting_status(self, document: Document):
  61. """Run the indexing process when the index_status is splitting."""
  62. # get dataset
  63. dataset = Dataset.query.filter_by(
  64. id=document.dataset_id
  65. ).first()
  66. if not dataset:
  67. raise ValueError("no dataset found")
  68. # get exist document_segment list and delete
  69. document_segments = DocumentSegment.query.filter_by(
  70. dataset_id=dataset.id,
  71. document_id=document.id
  72. ).all()
  73. db.session.delete(document_segments)
  74. db.session.commit()
  75. # load file
  76. text_docs = self._load_data(document)
  77. # get the process rule
  78. processing_rule = db.session.query(DatasetProcessRule). \
  79. filter(DatasetProcessRule.id == document.dataset_process_rule_id). \
  80. first()
  81. # get node parser for splitting
  82. node_parser = self._get_node_parser(processing_rule)
  83. # split to nodes
  84. nodes = self._step_split(
  85. text_docs=text_docs,
  86. node_parser=node_parser,
  87. dataset=dataset,
  88. document=document,
  89. processing_rule=processing_rule
  90. )
  91. # build index
  92. self._build_index(
  93. dataset=dataset,
  94. document=document,
  95. nodes=nodes
  96. )
  97. def run_in_indexing_status(self, document: Document):
  98. """Run the indexing process when the index_status is indexing."""
  99. # get dataset
  100. dataset = Dataset.query.filter_by(
  101. id=document.dataset_id
  102. ).first()
  103. if not dataset:
  104. raise ValueError("no dataset found")
  105. # get exist document_segment list and delete
  106. document_segments = DocumentSegment.query.filter_by(
  107. dataset_id=dataset.id,
  108. document_id=document.id
  109. ).all()
  110. nodes = []
  111. if document_segments:
  112. for document_segment in document_segments:
  113. # transform segment to node
  114. if document_segment.status != "completed":
  115. relationships = {
  116. DocumentRelationship.SOURCE: document_segment.document_id,
  117. }
  118. previous_segment = document_segment.previous_segment
  119. if previous_segment:
  120. relationships[DocumentRelationship.PREVIOUS] = previous_segment.index_node_id
  121. next_segment = document_segment.next_segment
  122. if next_segment:
  123. relationships[DocumentRelationship.NEXT] = next_segment.index_node_id
  124. node = Node(
  125. doc_id=document_segment.index_node_id,
  126. doc_hash=document_segment.index_node_hash,
  127. text=document_segment.content,
  128. extra_info=None,
  129. node_info=None,
  130. relationships=relationships
  131. )
  132. nodes.append(node)
  133. # build index
  134. self._build_index(
  135. dataset=dataset,
  136. document=document,
  137. nodes=nodes
  138. )
  139. def indexing_estimate(self, file_detail: UploadFile, tmp_processing_rule: dict) -> dict:
  140. """
  141. Estimate the indexing for the document.
  142. """
  143. # load data from file
  144. text_docs = self._load_data_from_file(file_detail)
  145. processing_rule = DatasetProcessRule(
  146. mode=tmp_processing_rule["mode"],
  147. rules=json.dumps(tmp_processing_rule["rules"])
  148. )
  149. # get node parser for splitting
  150. node_parser = self._get_node_parser(processing_rule)
  151. # split to nodes
  152. nodes = self._split_to_nodes(
  153. text_docs=text_docs,
  154. node_parser=node_parser,
  155. processing_rule=processing_rule
  156. )
  157. tokens = 0
  158. preview_texts = []
  159. for node in nodes:
  160. if len(preview_texts) < 5:
  161. preview_texts.append(node.get_text())
  162. tokens += TokenCalculator.get_num_tokens(self.embedding_model_name, node.get_text())
  163. return {
  164. "total_segments": len(nodes),
  165. "tokens": tokens,
  166. "total_price": '{:f}'.format(TokenCalculator.get_token_price(self.embedding_model_name, tokens)),
  167. "currency": TokenCalculator.get_currency(self.embedding_model_name),
  168. "preview": preview_texts
  169. }
  170. def _load_data(self, document: Document) -> List[Document]:
  171. # load file
  172. if document.data_source_type != "upload_file":
  173. return []
  174. data_source_info = document.data_source_info_dict
  175. if not data_source_info or 'upload_file_id' not in data_source_info:
  176. raise ValueError("no upload file found")
  177. file_detail = db.session.query(UploadFile). \
  178. filter(UploadFile.id == data_source_info['upload_file_id']). \
  179. one_or_none()
  180. text_docs = self._load_data_from_file(file_detail)
  181. # update document status to splitting
  182. self._update_document_index_status(
  183. document_id=document.id,
  184. after_indexing_status="splitting",
  185. extra_update_params={
  186. Document.file_id: file_detail.id,
  187. Document.word_count: sum([len(text_doc.text) for text_doc in text_docs]),
  188. Document.parsing_completed_at: datetime.datetime.utcnow()
  189. }
  190. )
  191. # replace doc id to document model id
  192. for text_doc in text_docs:
  193. # remove invalid symbol
  194. text_doc.text = self.filter_string(text_doc.get_text())
  195. text_doc.doc_id = document.id
  196. return text_docs
  197. def filter_string(self, text):
  198. pattern = re.compile('[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\x80-\xFF]')
  199. return pattern.sub('', text)
  200. def _load_data_from_file(self, upload_file: UploadFile) -> List[Document]:
  201. with tempfile.TemporaryDirectory() as temp_dir:
  202. suffix = Path(upload_file.key).suffix
  203. filepath = f"{temp_dir}/{next(tempfile._get_candidate_names())}{suffix}"
  204. self.storage.download(upload_file.key, filepath)
  205. file_extractor = DEFAULT_FILE_EXTRACTOR.copy()
  206. file_extractor[".markdown"] = MarkdownParser()
  207. file_extractor[".html"] = HTMLParser()
  208. file_extractor[".htm"] = HTMLParser()
  209. file_extractor[".pdf"] = PDFParser({'upload_file': upload_file})
  210. loader = SimpleDirectoryReader(input_files=[filepath], file_extractor=file_extractor)
  211. text_docs = loader.load_data()
  212. return text_docs
  213. def _get_node_parser(self, processing_rule: DatasetProcessRule) -> NodeParser:
  214. """
  215. Get the NodeParser object according to the processing rule.
  216. """
  217. if processing_rule.mode == "custom":
  218. # The user-defined segmentation rule
  219. rules = json.loads(processing_rule.rules)
  220. segmentation = rules["segmentation"]
  221. if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > 1000:
  222. raise ValueError("Custom segment length should be between 50 and 1000.")
  223. separator = segmentation["separator"]
  224. if not separator:
  225. separators = ["\n\n", "。", ".", " ", ""]
  226. else:
  227. separator = separator.replace('\\n', '\n')
  228. separators = [separator, ""]
  229. character_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
  230. chunk_size=segmentation["max_tokens"],
  231. chunk_overlap=0,
  232. separators=separators
  233. )
  234. else:
  235. # Automatic segmentation
  236. character_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
  237. chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
  238. chunk_overlap=0,
  239. separators=["\n\n", "。", ".", " ", ""]
  240. )
  241. return SimpleNodeParser(text_splitter=character_splitter, include_extra_info=True)
  242. def _step_split(self, text_docs: List[Document], node_parser: NodeParser,
  243. dataset: Dataset, document: Document, processing_rule: DatasetProcessRule) -> List[Node]:
  244. """
  245. Split the text documents into nodes and save them to the document segment.
  246. """
  247. nodes = self._split_to_nodes(
  248. text_docs=text_docs,
  249. node_parser=node_parser,
  250. processing_rule=processing_rule
  251. )
  252. # save node to document segment
  253. doc_store = DatesetDocumentStore(
  254. dataset=dataset,
  255. user_id=document.created_by,
  256. embedding_model_name=self.embedding_model_name,
  257. document_id=document.id
  258. )
  259. doc_store.add_documents(nodes)
  260. # update document status to indexing
  261. cur_time = datetime.datetime.utcnow()
  262. self._update_document_index_status(
  263. document_id=document.id,
  264. after_indexing_status="indexing",
  265. extra_update_params={
  266. Document.cleaning_completed_at: cur_time,
  267. Document.splitting_completed_at: cur_time,
  268. }
  269. )
  270. # update segment status to indexing
  271. self._update_segments_by_document(
  272. document_id=document.id,
  273. update_params={
  274. DocumentSegment.status: "indexing",
  275. DocumentSegment.indexing_at: datetime.datetime.utcnow()
  276. }
  277. )
  278. return nodes
  279. def _split_to_nodes(self, text_docs: List[Document], node_parser: NodeParser,
  280. processing_rule: DatasetProcessRule) -> List[Node]:
  281. """
  282. Split the text documents into nodes.
  283. """
  284. all_nodes = []
  285. for text_doc in text_docs:
  286. # document clean
  287. document_text = self._document_clean(text_doc.get_text(), processing_rule)
  288. text_doc.text = document_text
  289. # parse document to nodes
  290. nodes = node_parser.get_nodes_from_documents([text_doc])
  291. all_nodes.extend(nodes)
  292. return all_nodes
  293. def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str:
  294. """
  295. Clean the document text according to the processing rules.
  296. """
  297. if processing_rule.mode == "automatic":
  298. rules = DatasetProcessRule.AUTOMATIC_RULES
  299. else:
  300. rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
  301. if 'pre_processing_rules' in rules:
  302. pre_processing_rules = rules["pre_processing_rules"]
  303. for pre_processing_rule in pre_processing_rules:
  304. if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True:
  305. # Remove extra spaces
  306. pattern = r'\n{3,}'
  307. text = re.sub(pattern, '\n\n', text)
  308. pattern = r'[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}'
  309. text = re.sub(pattern, ' ', text)
  310. elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True:
  311. # Remove email
  312. pattern = r'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)'
  313. text = re.sub(pattern, '', text)
  314. # Remove URL
  315. pattern = r'https?://[^\s]+'
  316. text = re.sub(pattern, '', text)
  317. return text
  318. def _build_index(self, dataset: Dataset, document: Document, nodes: List[Node]) -> None:
  319. """
  320. Build the index for the document.
  321. """
  322. vector_index = VectorIndex(dataset=dataset)
  323. keyword_table_index = KeywordTableIndex(dataset=dataset)
  324. # chunk nodes by chunk size
  325. indexing_start_at = time.perf_counter()
  326. tokens = 0
  327. chunk_size = 100
  328. for i in range(0, len(nodes), chunk_size):
  329. # check document is paused
  330. self._check_document_paused_status(document.id)
  331. chunk_nodes = nodes[i:i + chunk_size]
  332. tokens += sum(
  333. TokenCalculator.get_num_tokens(self.embedding_model_name, node.get_text()) for node in chunk_nodes
  334. )
  335. # save vector index
  336. if dataset.indexing_technique == "high_quality":
  337. vector_index.add_nodes(chunk_nodes)
  338. # save keyword index
  339. keyword_table_index.add_nodes(chunk_nodes)
  340. node_ids = [node.doc_id for node in chunk_nodes]
  341. db.session.query(DocumentSegment).filter(
  342. DocumentSegment.document_id == document.id,
  343. DocumentSegment.index_node_id.in_(node_ids),
  344. DocumentSegment.status == "indexing"
  345. ).update({
  346. DocumentSegment.status: "completed",
  347. DocumentSegment.completed_at: datetime.datetime.utcnow()
  348. })
  349. db.session.commit()
  350. indexing_end_at = time.perf_counter()
  351. # update document status to completed
  352. self._update_document_index_status(
  353. document_id=document.id,
  354. after_indexing_status="completed",
  355. extra_update_params={
  356. Document.tokens: tokens,
  357. Document.completed_at: datetime.datetime.utcnow(),
  358. Document.indexing_latency: indexing_end_at - indexing_start_at,
  359. }
  360. )
  361. def _check_document_paused_status(self, document_id: str):
  362. indexing_cache_key = 'document_{}_is_paused'.format(document_id)
  363. result = redis_client.get(indexing_cache_key)
  364. if result:
  365. raise DocumentIsPausedException()
  366. def _update_document_index_status(self, document_id: str, after_indexing_status: str,
  367. extra_update_params: Optional[dict] = None) -> None:
  368. """
  369. Update the document indexing status.
  370. """
  371. count = Document.query.filter_by(id=document_id, is_paused=True).count()
  372. if count > 0:
  373. raise DocumentIsPausedException()
  374. update_params = {
  375. Document.indexing_status: after_indexing_status
  376. }
  377. if extra_update_params:
  378. update_params.update(extra_update_params)
  379. Document.query.filter_by(id=document_id).update(update_params)
  380. db.session.commit()
  381. def _update_segments_by_document(self, document_id: str, update_params: dict) -> None:
  382. """
  383. Update the document segment by document id.
  384. """
  385. DocumentSegment.query.filter_by(document_id=document_id).update(update_params)
  386. db.session.commit()
  387. class DocumentIsPausedException(Exception):
  388. pass