呆萌闷油瓶 f45042aa8e fix:ddg ratelimit 202 (#9047) 6 months ago
..
.idea 7ae728a9a3 fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) 7 months ago
.vscode 0d4753785f chore: remove .idea and .vscode from root path (#7437) 8 months ago
configs 2571b0c4e3 feat: add baidu obs storage (#9024) 6 months ago
constants 8c51d06222 feat: regenerate in `Chat`, `agent` and `Chatflow` app (#7661) 7 months ago
contexts 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 months ago
controllers 959a81a41b refactor: remove the duplicate definitions across different modules (#9022) 6 months ago
core 2ab8bc679f fix: Missing model information in llm span of Langfuse #9029 (#9030) 6 months ago
docker 8dfdb37de3 fix: use LOG_LEVEL for celery startup (#7628) 7 months ago
events 74f58f29f9 chore: bump ruff to 0.6.8 for fixing violation in SIM910 (#8869) 6 months ago
extensions 2571b0c4e3 feat: add baidu obs storage (#9024) 6 months ago
fields 9d221a5e19 external knowledge api (#8913) 6 months ago
libs 4373777871 Update json_in_md_parser.py (#8983) 6 months ago
migrations 9d221a5e19 external knowledge api (#8913) 6 months ago
models 9d221a5e19 external knowledge api (#8913) 6 months ago
schedule 9d221a5e19 external knowledge api (#8913) 6 months ago
services 625e4c4c72 fix multiple retrieval in knowledge node (#8942) 6 months ago
tasks 9d221a5e19 external knowledge api (#8913) 6 months ago
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) 9 months ago
tests 3af65b2f45 feat(api): add version comparison logic (#8902) 6 months ago
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) 10 months ago
.env.example 2571b0c4e3 feat: add baidu obs storage (#9024) 6 months ago
Dockerfile fede54be77 fix: Version '2.6.2-2' for 'expat' was not found (#8182) 7 months ago
README.md e75c33a561 Enhance Readme Documentation to Clarify the Importance of Celery Service (#8558) 7 months ago
app.py 9ca2e2c968 chore: remove windows platform timezone set (#8712) 6 months ago
commands.py bef83a4d2e fix: typos and improve naming conventions: (#8687) 6 months ago
poetry.lock f45042aa8e fix:ddg ratelimit 202 (#9047) 6 months ago
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) 10 months ago
pyproject.toml f45042aa8e fix:ddg ratelimit 202 (#9047) 6 months ago

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to handle and debug the async tasks (e.g. dataset importing and documents indexing), please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh