-LAN- 9414143b5f chore(api/libs): Apply ruff format. (#7301) 8 달 전
..
configs 7619850855 feat: support pinning, including, and excluding for Model Providers and Tools (#7283) 8 달 전
constants 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 달 전
contexts 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 달 전
controllers 2fe2e350ce add secondary sort_key when using `order_by` and `paginate` at the same time (#7225) 8 달 전
core 3f9720bca0 fix(api/core/app/segments/segments.py): Fix file to markdown. (#7293) 8 달 전
docker f656e1bae2 fix: ensure db migration in docker entry script running with `upgrade-db` command for proper locking (#6946) 8 달 전
events 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 달 전
extensions 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 달 전
fields 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 달 전
libs 9414143b5f chore(api/libs): Apply ruff format. (#7301) 8 달 전
migrations 32dc963556 feat(api/workflow): Add `Conversation.dialogue_count` (#7275) 8 달 전
models 32dc963556 feat(api/workflow): Add `Conversation.dialogue_count` (#7275) 8 달 전
schedule 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 달 전
services 2d89b7d0a9 fix(api/services/app_dsl_service.py): Add conversation variables. (#7304) 8 달 전
tasks 935e72d449 Feat: conversation variable & variable assigner node (#7222) 8 달 전
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) 9 달 전
tests 7619850855 feat: support pinning, including, and excluding for Model Providers and Tools (#7283) 8 달 전
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) 10 달 전
.env.example 7619850855 feat: support pinning, including, and excluding for Model Providers and Tools (#7283) 8 달 전
Dockerfile 169cde6c3c add nltk punkt resource (#7063) 8 달 전
README.md fb5e3662d5 Chores: add missing profile for middleware docker compose cmd and fix ssrf-proxy doc link (#6372) 9 달 전
app.py 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 달 전
commands.py 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 달 전
poetry.lock f104b930cf feat: support elasticsearch vector database (#3558) 8 달 전
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) 10 달 전
pyproject.toml 9414143b5f chore(api/libs): Apply ruff format. (#7301) 8 달 전

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh