123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590 |
- import enum
- import json
- import os
- import re
- from typing import Optional, cast
- from core.entities.application_entities import (
- AdvancedCompletionPromptTemplateEntity,
- ModelConfigEntity,
- PromptTemplateEntity,
- )
- from core.file.file_obj import FileObj
- from core.memory.token_buffer_memory import TokenBufferMemory
- from core.model_runtime.entities.message_entities import (
- AssistantPromptMessage,
- PromptMessage,
- PromptMessageRole,
- SystemPromptMessage,
- TextPromptMessageContent,
- UserPromptMessage,
- )
- from core.model_runtime.entities.model_entities import ModelPropertyKey
- from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
- from core.prompt.prompt_builder import PromptBuilder
- from core.prompt.prompt_template import PromptTemplateParser
- class AppMode(enum.Enum):
- COMPLETION = 'completion'
- CHAT = 'chat'
- @classmethod
- def value_of(cls, value: str) -> 'AppMode':
- """
- Get value of given mode.
- :param value: mode value
- :return: mode
- """
- for mode in cls:
- if mode.value == value:
- return mode
- raise ValueError(f'invalid mode value {value}')
- class ModelMode(enum.Enum):
- COMPLETION = 'completion'
- CHAT = 'chat'
- @classmethod
- def value_of(cls, value: str) -> 'ModelMode':
- """
- Get value of given mode.
- :param value: mode value
- :return: mode
- """
- for mode in cls:
- if mode.value == value:
- return mode
- raise ValueError(f'invalid mode value {value}')
- class PromptTransform:
- def get_prompt(self,
- app_mode: str,
- prompt_template_entity: PromptTemplateEntity,
- inputs: dict,
- query: str,
- files: list[FileObj],
- context: Optional[str],
- memory: Optional[TokenBufferMemory],
- model_config: ModelConfigEntity) -> \
- tuple[list[PromptMessage], Optional[list[str]]]:
- app_mode = AppMode.value_of(app_mode)
- model_mode = ModelMode.value_of(model_config.mode)
- prompt_rules = self._read_prompt_rules_from_file(self._prompt_file_name(
- app_mode=app_mode,
- provider=model_config.provider,
- model=model_config.model
- ))
- if app_mode == AppMode.CHAT and model_mode == ModelMode.CHAT:
- stops = None
- prompt_messages = self._get_simple_chat_app_chat_model_prompt_messages(
- prompt_rules=prompt_rules,
- pre_prompt=prompt_template_entity.simple_prompt_template,
- inputs=inputs,
- query=query,
- files=files,
- context=context,
- memory=memory,
- model_config=model_config
- )
- else:
- stops = prompt_rules.get('stops')
- if stops is not None and len(stops) == 0:
- stops = None
- prompt_messages = self._get_simple_others_prompt_messages(
- prompt_rules=prompt_rules,
- pre_prompt=prompt_template_entity.simple_prompt_template,
- inputs=inputs,
- query=query,
- files=files,
- context=context,
- memory=memory,
- model_config=model_config
- )
- return prompt_messages, stops
- def get_advanced_prompt(self, app_mode: str,
- prompt_template_entity: PromptTemplateEntity,
- inputs: dict,
- query: str,
- files: list[FileObj],
- context: Optional[str],
- memory: Optional[TokenBufferMemory],
- model_config: ModelConfigEntity) -> list[PromptMessage]:
- app_mode = AppMode.value_of(app_mode)
- model_mode = ModelMode.value_of(model_config.mode)
- prompt_messages = []
- if app_mode == AppMode.CHAT:
- if model_mode == ModelMode.COMPLETION:
- prompt_messages = self._get_chat_app_completion_model_prompt_messages(
- prompt_template_entity=prompt_template_entity,
- inputs=inputs,
- query=query,
- files=files,
- context=context,
- memory=memory,
- model_config=model_config
- )
- elif model_mode == ModelMode.CHAT:
- prompt_messages = self._get_chat_app_chat_model_prompt_messages(
- prompt_template_entity=prompt_template_entity,
- inputs=inputs,
- query=query,
- files=files,
- context=context,
- memory=memory,
- model_config=model_config
- )
- elif app_mode == AppMode.COMPLETION:
- if model_mode == ModelMode.CHAT:
- prompt_messages = self._get_completion_app_chat_model_prompt_messages(
- prompt_template_entity=prompt_template_entity,
- inputs=inputs,
- files=files,
- context=context,
- )
- elif model_mode == ModelMode.COMPLETION:
- prompt_messages = self._get_completion_app_completion_model_prompt_messages(
- prompt_template_entity=prompt_template_entity,
- inputs=inputs,
- context=context,
- )
- return prompt_messages
- def _get_history_messages_from_memory(self, memory: TokenBufferMemory,
- max_token_limit: int,
- human_prefix: Optional[str] = None,
- ai_prefix: Optional[str] = None) -> str:
- """Get memory messages."""
- kwargs = {
- "max_token_limit": max_token_limit
- }
- if human_prefix:
- kwargs['human_prefix'] = human_prefix
- if ai_prefix:
- kwargs['ai_prefix'] = ai_prefix
- return memory.get_history_prompt_text(
- **kwargs
- )
- def _get_history_messages_list_from_memory(self, memory: TokenBufferMemory,
- max_token_limit: int) -> list[PromptMessage]:
- """Get memory messages."""
- return memory.get_history_prompt_messages(
- max_token_limit=max_token_limit
- )
- def _prompt_file_name(self, app_mode: AppMode, provider: str, model: str) -> str:
- # baichuan
- if provider == 'baichuan':
- return self._prompt_file_name_for_baichuan(app_mode)
- baichuan_supported_providers = ["huggingface_hub", "openllm", "xinference"]
- if provider in baichuan_supported_providers and 'baichuan' in model.lower():
- return self._prompt_file_name_for_baichuan(app_mode)
- # common
- if app_mode == AppMode.COMPLETION:
- return 'common_completion'
- else:
- return 'common_chat'
- def _prompt_file_name_for_baichuan(self, app_mode: AppMode) -> str:
- if app_mode == AppMode.COMPLETION:
- return 'baichuan_completion'
- else:
- return 'baichuan_chat'
- def _read_prompt_rules_from_file(self, prompt_name: str) -> dict:
- # Get the absolute path of the subdirectory
- prompt_path = os.path.join(
- os.path.dirname(os.path.realpath(__file__)),
- 'generate_prompts')
- json_file_path = os.path.join(prompt_path, f'{prompt_name}.json')
- # Open the JSON file and read its content
- with open(json_file_path, encoding='utf-8') as json_file:
- return json.load(json_file)
- def _get_simple_chat_app_chat_model_prompt_messages(self, prompt_rules: dict,
- pre_prompt: str,
- inputs: dict,
- query: str,
- context: Optional[str],
- files: list[FileObj],
- memory: Optional[TokenBufferMemory],
- model_config: ModelConfigEntity) -> list[PromptMessage]:
- prompt_messages = []
- context_prompt_content = ''
- if context and 'context_prompt' in prompt_rules:
- prompt_template = PromptTemplateParser(template=prompt_rules['context_prompt'])
- context_prompt_content = prompt_template.format(
- {'context': context}
- )
- pre_prompt_content = ''
- if pre_prompt:
- prompt_template = PromptTemplateParser(template=pre_prompt)
- prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
- pre_prompt_content = prompt_template.format(
- prompt_inputs
- )
- prompt = ''
- for order in prompt_rules['system_prompt_orders']:
- if order == 'context_prompt':
- prompt += context_prompt_content
- elif order == 'pre_prompt':
- prompt += pre_prompt_content
- prompt = re.sub(r'<\|.*?\|>', '', prompt)
- if prompt:
- prompt_messages.append(SystemPromptMessage(content=prompt))
- self._append_chat_histories(
- memory=memory,
- prompt_messages=prompt_messages,
- model_config=model_config
- )
- if files:
- prompt_message_contents = [TextPromptMessageContent(data=query)]
- for file in files:
- prompt_message_contents.append(file.prompt_message_content)
- prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
- else:
- prompt_messages.append(UserPromptMessage(content=query))
- return prompt_messages
- def _get_simple_others_prompt_messages(self, prompt_rules: dict,
- pre_prompt: str,
- inputs: dict,
- query: str,
- context: Optional[str],
- memory: Optional[TokenBufferMemory],
- files: list[FileObj],
- model_config: ModelConfigEntity) -> list[PromptMessage]:
- context_prompt_content = ''
- if context and 'context_prompt' in prompt_rules:
- prompt_template = PromptTemplateParser(template=prompt_rules['context_prompt'])
- context_prompt_content = prompt_template.format(
- {'context': context}
- )
- pre_prompt_content = ''
- if pre_prompt:
- prompt_template = PromptTemplateParser(template=pre_prompt)
- prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
- pre_prompt_content = prompt_template.format(
- prompt_inputs
- )
- prompt = ''
- for order in prompt_rules['system_prompt_orders']:
- if order == 'context_prompt':
- prompt += context_prompt_content
- elif order == 'pre_prompt':
- prompt += pre_prompt_content
- query_prompt = prompt_rules['query_prompt'] if 'query_prompt' in prompt_rules else '{{query}}'
- if memory and 'histories_prompt' in prompt_rules:
- # append chat histories
- tmp_human_message = UserPromptMessage(
- content=PromptBuilder.parse_prompt(
- prompt=prompt + query_prompt,
- inputs={
- 'query': query
- }
- )
- )
- rest_tokens = self._calculate_rest_token([tmp_human_message], model_config)
- histories = self._get_history_messages_from_memory(
- memory=memory,
- max_token_limit=rest_tokens,
- ai_prefix=prompt_rules['human_prefix'] if 'human_prefix' in prompt_rules else 'Human',
- human_prefix=prompt_rules['assistant_prefix'] if 'assistant_prefix' in prompt_rules else 'Assistant'
- )
- prompt_template = PromptTemplateParser(template=prompt_rules['histories_prompt'])
- histories_prompt_content = prompt_template.format({'histories': histories})
- prompt = ''
- for order in prompt_rules['system_prompt_orders']:
- if order == 'context_prompt':
- prompt += context_prompt_content
- elif order == 'pre_prompt':
- prompt += (pre_prompt_content + '\n') if pre_prompt_content else ''
- elif order == 'histories_prompt':
- prompt += histories_prompt_content
- prompt_template = PromptTemplateParser(template=query_prompt)
- query_prompt_content = prompt_template.format({'query': query})
- prompt += query_prompt_content
- prompt = re.sub(r'<\|.*?\|>', '', prompt)
- model_mode = ModelMode.value_of(model_config.mode)
- if model_mode == ModelMode.CHAT and files:
- prompt_message_contents = [TextPromptMessageContent(data=prompt)]
- for file in files:
- prompt_message_contents.append(file.prompt_message_content)
- prompt_message = UserPromptMessage(content=prompt_message_contents)
- else:
- if files:
- prompt_message_contents = [TextPromptMessageContent(data=prompt)]
- for file in files:
- prompt_message_contents.append(file.prompt_message_content)
- prompt_message = UserPromptMessage(content=prompt_message_contents)
- else:
- prompt_message = UserPromptMessage(content=prompt)
- return [prompt_message]
- def _set_context_variable(self, context: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> None:
- if '#context#' in prompt_template.variable_keys:
- if context:
- prompt_inputs['#context#'] = context
- else:
- prompt_inputs['#context#'] = ''
- def _set_query_variable(self, query: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> None:
- if '#query#' in prompt_template.variable_keys:
- if query:
- prompt_inputs['#query#'] = query
- else:
- prompt_inputs['#query#'] = ''
- def _set_histories_variable(self, memory: TokenBufferMemory,
- raw_prompt: str,
- role_prefix: AdvancedCompletionPromptTemplateEntity.RolePrefixEntity,
- prompt_template: PromptTemplateParser,
- prompt_inputs: dict,
- model_config: ModelConfigEntity) -> None:
- if '#histories#' in prompt_template.variable_keys:
- if memory:
- tmp_human_message = UserPromptMessage(
- content=PromptBuilder.parse_prompt(
- prompt=raw_prompt,
- inputs={'#histories#': '', **prompt_inputs}
- )
- )
- rest_tokens = self._calculate_rest_token([tmp_human_message], model_config)
- histories = self._get_history_messages_from_memory(
- memory=memory,
- max_token_limit=rest_tokens,
- human_prefix=role_prefix.user,
- ai_prefix=role_prefix.assistant
- )
- prompt_inputs['#histories#'] = histories
- else:
- prompt_inputs['#histories#'] = ''
- def _append_chat_histories(self, memory: TokenBufferMemory,
- prompt_messages: list[PromptMessage],
- model_config: ModelConfigEntity) -> None:
- if memory:
- rest_tokens = self._calculate_rest_token(prompt_messages, model_config)
- histories = self._get_history_messages_list_from_memory(memory, rest_tokens)
- prompt_messages.extend(histories)
- def _calculate_rest_token(self, prompt_messages: list[PromptMessage], model_config: ModelConfigEntity) -> int:
- rest_tokens = 2000
- model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
- if model_context_tokens:
- model_type_instance = model_config.provider_model_bundle.model_type_instance
- model_type_instance = cast(LargeLanguageModel, model_type_instance)
- curr_message_tokens = model_type_instance.get_num_tokens(
- model_config.model,
- model_config.credentials,
- prompt_messages
- )
- max_tokens = 0
- for parameter_rule in model_config.model_schema.parameter_rules:
- if (parameter_rule.name == 'max_tokens'
- or (parameter_rule.use_template and parameter_rule.use_template == 'max_tokens')):
- max_tokens = (model_config.parameters.get(parameter_rule.name)
- or model_config.parameters.get(parameter_rule.use_template)) or 0
- rest_tokens = model_context_tokens - max_tokens - curr_message_tokens
- rest_tokens = max(rest_tokens, 0)
- return rest_tokens
- def _format_prompt(self, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> str:
- prompt = prompt_template.format(
- prompt_inputs
- )
- prompt = re.sub(r'<\|.*?\|>', '', prompt)
- return prompt
- def _get_chat_app_completion_model_prompt_messages(self,
- prompt_template_entity: PromptTemplateEntity,
- inputs: dict,
- query: str,
- files: list[FileObj],
- context: Optional[str],
- memory: Optional[TokenBufferMemory],
- model_config: ModelConfigEntity) -> list[PromptMessage]:
- raw_prompt = prompt_template_entity.advanced_completion_prompt_template.prompt
- role_prefix = prompt_template_entity.advanced_completion_prompt_template.role_prefix
- prompt_messages = []
- prompt_template = PromptTemplateParser(template=raw_prompt)
- prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
- self._set_context_variable(context, prompt_template, prompt_inputs)
- self._set_query_variable(query, prompt_template, prompt_inputs)
- self._set_histories_variable(
- memory=memory,
- raw_prompt=raw_prompt,
- role_prefix=role_prefix,
- prompt_template=prompt_template,
- prompt_inputs=prompt_inputs,
- model_config=model_config
- )
- prompt = self._format_prompt(prompt_template, prompt_inputs)
- if files:
- prompt_message_contents = [TextPromptMessageContent(data=prompt)]
- for file in files:
- prompt_message_contents.append(file.prompt_message_content)
- prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
- else:
- prompt_messages.append(UserPromptMessage(content=prompt))
- return prompt_messages
- def _get_chat_app_chat_model_prompt_messages(self,
- prompt_template_entity: PromptTemplateEntity,
- inputs: dict,
- query: str,
- files: list[FileObj],
- context: Optional[str],
- memory: Optional[TokenBufferMemory],
- model_config: ModelConfigEntity) -> list[PromptMessage]:
- raw_prompt_list = prompt_template_entity.advanced_chat_prompt_template.messages
- prompt_messages = []
- for prompt_item in raw_prompt_list:
- raw_prompt = prompt_item.text
- prompt_template = PromptTemplateParser(template=raw_prompt)
- prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
- self._set_context_variable(context, prompt_template, prompt_inputs)
- prompt = self._format_prompt(prompt_template, prompt_inputs)
- if prompt_item.role == PromptMessageRole.USER:
- prompt_messages.append(UserPromptMessage(content=prompt))
- elif prompt_item.role == PromptMessageRole.SYSTEM and prompt:
- prompt_messages.append(SystemPromptMessage(content=prompt))
- elif prompt_item.role == PromptMessageRole.ASSISTANT:
- prompt_messages.append(AssistantPromptMessage(content=prompt))
- self._append_chat_histories(memory, prompt_messages, model_config)
- if files:
- prompt_message_contents = [TextPromptMessageContent(data=query)]
- for file in files:
- prompt_message_contents.append(file.prompt_message_content)
- prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
- else:
- prompt_messages.append(UserPromptMessage(content=query))
- return prompt_messages
- def _get_completion_app_completion_model_prompt_messages(self,
- prompt_template_entity: PromptTemplateEntity,
- inputs: dict,
- context: Optional[str]) -> list[PromptMessage]:
- raw_prompt = prompt_template_entity.advanced_completion_prompt_template.prompt
- prompt_messages = []
- prompt_template = PromptTemplateParser(template=raw_prompt)
- prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
- self._set_context_variable(context, prompt_template, prompt_inputs)
- prompt = self._format_prompt(prompt_template, prompt_inputs)
- prompt_messages.append(UserPromptMessage(content=prompt))
- return prompt_messages
- def _get_completion_app_chat_model_prompt_messages(self,
- prompt_template_entity: PromptTemplateEntity,
- inputs: dict,
- files: list[FileObj],
- context: Optional[str]) -> list[PromptMessage]:
- raw_prompt_list = prompt_template_entity.advanced_chat_prompt_template.messages
- prompt_messages = []
- for prompt_item in raw_prompt_list:
- raw_prompt = prompt_item.text
- prompt_template = PromptTemplateParser(template=raw_prompt)
- prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
- self._set_context_variable(context, prompt_template, prompt_inputs)
- prompt = self._format_prompt(prompt_template, prompt_inputs)
- if prompt_item.role == PromptMessageRole.USER:
- prompt_messages.append(UserPromptMessage(content=prompt))
- elif prompt_item.role == PromptMessageRole.SYSTEM and prompt:
- prompt_messages.append(SystemPromptMessage(content=prompt))
- elif prompt_item.role == PromptMessageRole.ASSISTANT:
- prompt_messages.append(AssistantPromptMessage(content=prompt))
- for prompt_message in prompt_messages[::-1]:
- if prompt_message.role == PromptMessageRole.USER:
- if files:
- prompt_message_contents = [TextPromptMessageContent(data=prompt_message.content)]
- for file in files:
- prompt_message_contents.append(file.prompt_message_content)
- prompt_message.content = prompt_message_contents
- break
- return prompt_messages
|