retrieval_service.py 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233
  1. import threading
  2. from typing import Optional
  3. from flask import Flask, current_app
  4. from core.rag.data_post_processor.data_post_processor import DataPostProcessor
  5. from core.rag.datasource.keyword.keyword_factory import Keyword
  6. from core.rag.datasource.vdb.vector_factory import Vector
  7. from core.rag.rerank.rerank_type import RerankMode
  8. from core.rag.retrieval.retrieval_methods import RetrievalMethod
  9. from extensions.ext_database import db
  10. from models.dataset import Dataset
  11. from services.external_knowledge_service import ExternalDatasetService
  12. default_retrieval_model = {
  13. "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
  14. "reranking_enable": False,
  15. "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
  16. "top_k": 2,
  17. "score_threshold_enabled": False,
  18. }
  19. class RetrievalService:
  20. @classmethod
  21. def retrieve(
  22. cls,
  23. retrieval_method: str,
  24. dataset_id: str,
  25. query: str,
  26. top_k: int,
  27. score_threshold: Optional[float] = 0.0,
  28. reranking_model: Optional[dict] = None,
  29. reranking_mode: Optional[str] = "reranking_model",
  30. weights: Optional[dict] = None,
  31. ):
  32. if not query:
  33. return []
  34. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  35. if not dataset:
  36. return []
  37. if not dataset or dataset.available_document_count == 0 or dataset.available_segment_count == 0:
  38. return []
  39. all_documents = []
  40. threads = []
  41. exceptions = []
  42. # retrieval_model source with keyword
  43. if retrieval_method == "keyword_search":
  44. keyword_thread = threading.Thread(
  45. target=RetrievalService.keyword_search,
  46. kwargs={
  47. "flask_app": current_app._get_current_object(),
  48. "dataset_id": dataset_id,
  49. "query": query,
  50. "top_k": top_k,
  51. "all_documents": all_documents,
  52. "exceptions": exceptions,
  53. },
  54. )
  55. threads.append(keyword_thread)
  56. keyword_thread.start()
  57. # retrieval_model source with semantic
  58. if RetrievalMethod.is_support_semantic_search(retrieval_method):
  59. embedding_thread = threading.Thread(
  60. target=RetrievalService.embedding_search,
  61. kwargs={
  62. "flask_app": current_app._get_current_object(),
  63. "dataset_id": dataset_id,
  64. "query": query,
  65. "top_k": top_k,
  66. "score_threshold": score_threshold,
  67. "reranking_model": reranking_model,
  68. "all_documents": all_documents,
  69. "retrieval_method": retrieval_method,
  70. "exceptions": exceptions,
  71. },
  72. )
  73. threads.append(embedding_thread)
  74. embedding_thread.start()
  75. # retrieval source with full text
  76. if RetrievalMethod.is_support_fulltext_search(retrieval_method):
  77. full_text_index_thread = threading.Thread(
  78. target=RetrievalService.full_text_index_search,
  79. kwargs={
  80. "flask_app": current_app._get_current_object(),
  81. "dataset_id": dataset_id,
  82. "query": query,
  83. "retrieval_method": retrieval_method,
  84. "score_threshold": score_threshold,
  85. "top_k": top_k,
  86. "reranking_model": reranking_model,
  87. "all_documents": all_documents,
  88. "exceptions": exceptions,
  89. },
  90. )
  91. threads.append(full_text_index_thread)
  92. full_text_index_thread.start()
  93. for thread in threads:
  94. thread.join()
  95. if exceptions:
  96. exception_message = ";\n".join(exceptions)
  97. raise Exception(exception_message)
  98. if retrieval_method == RetrievalMethod.HYBRID_SEARCH.value:
  99. data_post_processor = DataPostProcessor(
  100. str(dataset.tenant_id), reranking_mode, reranking_model, weights, False
  101. )
  102. all_documents = data_post_processor.invoke(
  103. query=query, documents=all_documents, score_threshold=score_threshold, top_n=top_k
  104. )
  105. return all_documents
  106. @classmethod
  107. def external_retrieve(cls, dataset_id: str, query: str, external_retrieval_model: Optional[dict] = None):
  108. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  109. if not dataset:
  110. return []
  111. all_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
  112. dataset.tenant_id, dataset_id, query, external_retrieval_model
  113. )
  114. return all_documents
  115. @classmethod
  116. def keyword_search(
  117. cls, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list, exceptions: list
  118. ):
  119. with flask_app.app_context():
  120. try:
  121. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  122. keyword = Keyword(dataset=dataset)
  123. documents = keyword.search(cls.escape_query_for_search(query), top_k=top_k)
  124. all_documents.extend(documents)
  125. except Exception as e:
  126. exceptions.append(str(e))
  127. @classmethod
  128. def embedding_search(
  129. cls,
  130. flask_app: Flask,
  131. dataset_id: str,
  132. query: str,
  133. top_k: int,
  134. score_threshold: Optional[float],
  135. reranking_model: Optional[dict],
  136. all_documents: list,
  137. retrieval_method: str,
  138. exceptions: list,
  139. ):
  140. with flask_app.app_context():
  141. try:
  142. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  143. vector = Vector(dataset=dataset)
  144. documents = vector.search_by_vector(
  145. cls.escape_query_for_search(query),
  146. search_type="similarity_score_threshold",
  147. top_k=top_k,
  148. score_threshold=score_threshold,
  149. filter={"group_id": [dataset.id]},
  150. )
  151. if documents:
  152. if (
  153. reranking_model
  154. and reranking_model.get("reranking_model_name")
  155. and reranking_model.get("reranking_provider_name")
  156. and retrieval_method == RetrievalMethod.SEMANTIC_SEARCH.value
  157. ):
  158. data_post_processor = DataPostProcessor(
  159. str(dataset.tenant_id), RerankMode.RERANKING_MODEL.value, reranking_model, None, False
  160. )
  161. all_documents.extend(
  162. data_post_processor.invoke(
  163. query=query, documents=documents, score_threshold=score_threshold, top_n=len(documents)
  164. )
  165. )
  166. else:
  167. all_documents.extend(documents)
  168. except Exception as e:
  169. exceptions.append(str(e))
  170. @classmethod
  171. def full_text_index_search(
  172. cls,
  173. flask_app: Flask,
  174. dataset_id: str,
  175. query: str,
  176. top_k: int,
  177. score_threshold: Optional[float],
  178. reranking_model: Optional[dict],
  179. all_documents: list,
  180. retrieval_method: str,
  181. exceptions: list,
  182. ):
  183. with flask_app.app_context():
  184. try:
  185. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  186. vector_processor = Vector(
  187. dataset=dataset,
  188. )
  189. documents = vector_processor.search_by_full_text(cls.escape_query_for_search(query), top_k=top_k)
  190. if documents:
  191. if (
  192. reranking_model
  193. and reranking_model.get("reranking_model_name")
  194. and reranking_model.get("reranking_provider_name")
  195. and retrieval_method == RetrievalMethod.FULL_TEXT_SEARCH.value
  196. ):
  197. data_post_processor = DataPostProcessor(
  198. str(dataset.tenant_id), RerankMode.RERANKING_MODEL.value, reranking_model, None, False
  199. )
  200. all_documents.extend(
  201. data_post_processor.invoke(
  202. query=query, documents=documents, score_threshold=score_threshold, top_n=len(documents)
  203. )
  204. )
  205. else:
  206. all_documents.extend(documents)
  207. except Exception as e:
  208. exceptions.append(str(e))
  209. @staticmethod
  210. def escape_query_for_search(query: str) -> str:
  211. return query.replace('"', '\\"')