Jyong 60001a62c4 fixed chunk_overlap is None (#7703) 8 mesi fa
..
.idea 7ae728a9a3 fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) 8 mesi fa
.vscode 0d4753785f chore: remove .idea and .vscode from root path (#7437) 8 mesi fa
configs 122ce41020 feat: rewrite Elasticsearch index and search code to achieve Elasticsearch vector and full-text search (#7641) 8 mesi fa
constants 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 mesi fa
contexts 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 mesi fa
controllers 2726fb3d5d feat:dailymessages (#7603) 8 mesi fa
core 60001a62c4 fixed chunk_overlap is None (#7703) 8 mesi fa
docker 8dfdb37de3 fix: use LOG_LEVEL for celery startup (#7628) 8 mesi fa
events fbf31b5d52 feat: custom app icon (#7196) 8 mesi fa
extensions 0006c6f0fd fix(storage): 🐛 Create S3 bucket if it doesn't exist (#7514) 8 mesi fa
fields d7aa4076c9 feat: display account name on the logs page for the apps (#7668) 8 mesi fa
libs fbf31b5d52 feat: custom app icon (#7196) 8 mesi fa
migrations 2e9084f369 chore(database): Rename table name from `workflow__conversation_variables` to `workflow_conversation_variables`. (#7432) 8 mesi fa
models d7aa4076c9 feat: display account name on the logs page for the apps (#7668) 8 mesi fa
schedule 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 mesi fa
services e7afee1176 Langfuse view button (#7684) 8 mesi fa
tasks 979422cdc6 chore(api/tasks): apply ruff reformatting (#7594) 8 mesi fa
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) 9 mesi fa
tests 7b7576ad55 Add Azure AI Studio as provider (#7549) 8 mesi fa
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) 10 mesi fa
.env.example 2c427e04be Feat/7134 use dataset api create a dataset with permission (#7508) 8 mesi fa
Dockerfile 7ae728a9a3 fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) 8 mesi fa
README.md fb5e3662d5 Chores: add missing profile for middleware docker compose cmd and fix ssrf-proxy doc link (#6372) 9 mesi fa
app.py 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 mesi fa
commands.py 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 mesi fa
poetry.lock 7b7576ad55 Add Azure AI Studio as provider (#7549) 8 mesi fa
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) 10 mesi fa
pyproject.toml 7b7576ad55 Add Azure AI Studio as provider (#7549) 8 mesi fa

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh