document.py 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503
  1. import json
  2. from flask import request
  3. from flask_restful import marshal, reqparse # type: ignore
  4. from sqlalchemy import desc
  5. from werkzeug.exceptions import NotFound
  6. import services.dataset_service
  7. from controllers.common.errors import FilenameNotExistsError
  8. from controllers.service_api import api
  9. from controllers.service_api.app.error import (
  10. FileTooLargeError,
  11. NoFileUploadedError,
  12. ProviderNotInitializeError,
  13. TooManyFilesError,
  14. UnsupportedFileTypeError,
  15. )
  16. from controllers.service_api.dataset.error import (
  17. ArchivedDocumentImmutableError,
  18. DocumentIndexingError,
  19. InvalidMetadataError,
  20. )
  21. from controllers.service_api.wraps import DatasetApiResource, cloud_edition_billing_resource_check
  22. from core.errors.error import ProviderTokenNotInitError
  23. from extensions.ext_database import db
  24. from fields.document_fields import document_fields, document_status_fields
  25. from libs.login import current_user
  26. from models.dataset import Dataset, Document, DocumentSegment
  27. from services.dataset_service import DocumentService
  28. from services.entities.knowledge_entities.knowledge_entities import KnowledgeConfig
  29. from services.file_service import FileService
  30. class DocumentAddByTextApi(DatasetApiResource):
  31. """Resource for documents."""
  32. @cloud_edition_billing_resource_check("vector_space", "dataset")
  33. @cloud_edition_billing_resource_check("documents", "dataset")
  34. def post(self, tenant_id, dataset_id):
  35. """Create document by text."""
  36. parser = reqparse.RequestParser()
  37. parser.add_argument("name", type=str, required=True, nullable=False, location="json")
  38. parser.add_argument("text", type=str, required=True, nullable=False, location="json")
  39. parser.add_argument("process_rule", type=dict, required=False, nullable=True, location="json")
  40. parser.add_argument("original_document_id", type=str, required=False, location="json")
  41. parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
  42. parser.add_argument(
  43. "doc_language", type=str, default="English", required=False, nullable=False, location="json"
  44. )
  45. parser.add_argument(
  46. "indexing_technique", type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, nullable=False, location="json"
  47. )
  48. parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
  49. parser.add_argument("doc_type", type=str, required=False, nullable=True, location="json")
  50. parser.add_argument("doc_metadata", type=dict, required=False, nullable=True, location="json")
  51. args = parser.parse_args()
  52. dataset_id = str(dataset_id)
  53. tenant_id = str(tenant_id)
  54. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  55. if not dataset:
  56. raise ValueError("Dataset is not exist.")
  57. if not dataset.indexing_technique and not args["indexing_technique"]:
  58. raise ValueError("indexing_technique is required.")
  59. # Validate metadata if provided
  60. if args.get("doc_type") or args.get("doc_metadata"):
  61. if not args.get("doc_type") or not args.get("doc_metadata"):
  62. raise InvalidMetadataError("Both doc_type and doc_metadata must be provided when adding metadata")
  63. if args["doc_type"] not in DocumentService.DOCUMENT_METADATA_SCHEMA:
  64. raise InvalidMetadataError(
  65. "Invalid doc_type. Must be one of: " + ", ".join(DocumentService.DOCUMENT_METADATA_SCHEMA.keys())
  66. )
  67. if not isinstance(args["doc_metadata"], dict):
  68. raise InvalidMetadataError("doc_metadata must be a dictionary")
  69. # Validate metadata schema based on doc_type
  70. if args["doc_type"] != "others":
  71. metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[args["doc_type"]]
  72. for key, value in args["doc_metadata"].items():
  73. if key in metadata_schema and not isinstance(value, metadata_schema[key]):
  74. raise InvalidMetadataError(f"Invalid type for metadata field {key}")
  75. # set to MetaDataConfig
  76. args["metadata"] = {"doc_type": args["doc_type"], "doc_metadata": args["doc_metadata"]}
  77. text = args.get("text")
  78. name = args.get("name")
  79. if text is None or name is None:
  80. raise ValueError("Both 'text' and 'name' must be non-null values.")
  81. upload_file = FileService.upload_text(text=str(text), text_name=str(name))
  82. data_source = {
  83. "type": "upload_file",
  84. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  85. }
  86. args["data_source"] = data_source
  87. knowledge_config = KnowledgeConfig(**args)
  88. # validate args
  89. DocumentService.document_create_args_validate(knowledge_config)
  90. try:
  91. documents, batch = DocumentService.save_document_with_dataset_id(
  92. dataset=dataset,
  93. knowledge_config=knowledge_config,
  94. account=current_user,
  95. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  96. created_from="api",
  97. )
  98. except ProviderTokenNotInitError as ex:
  99. raise ProviderNotInitializeError(ex.description)
  100. document = documents[0]
  101. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
  102. return documents_and_batch_fields, 200
  103. class DocumentUpdateByTextApi(DatasetApiResource):
  104. """Resource for update documents."""
  105. @cloud_edition_billing_resource_check("vector_space", "dataset")
  106. def post(self, tenant_id, dataset_id, document_id):
  107. """Update document by text."""
  108. parser = reqparse.RequestParser()
  109. parser.add_argument("name", type=str, required=False, nullable=True, location="json")
  110. parser.add_argument("text", type=str, required=False, nullable=True, location="json")
  111. parser.add_argument("process_rule", type=dict, required=False, nullable=True, location="json")
  112. parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
  113. parser.add_argument(
  114. "doc_language", type=str, default="English", required=False, nullable=False, location="json"
  115. )
  116. parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
  117. parser.add_argument("doc_type", type=str, required=False, nullable=True, location="json")
  118. parser.add_argument("doc_metadata", type=dict, required=False, nullable=True, location="json")
  119. args = parser.parse_args()
  120. dataset_id = str(dataset_id)
  121. tenant_id = str(tenant_id)
  122. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  123. if not dataset:
  124. raise ValueError("Dataset is not exist.")
  125. # Validate metadata if provided
  126. if args.get("doc_type") or args.get("doc_metadata"):
  127. if not args.get("doc_type") or not args.get("doc_metadata"):
  128. raise InvalidMetadataError("Both doc_type and doc_metadata must be provided when adding metadata")
  129. if args["doc_type"] not in DocumentService.DOCUMENT_METADATA_SCHEMA:
  130. raise InvalidMetadataError(
  131. "Invalid doc_type. Must be one of: " + ", ".join(DocumentService.DOCUMENT_METADATA_SCHEMA.keys())
  132. )
  133. if not isinstance(args["doc_metadata"], dict):
  134. raise InvalidMetadataError("doc_metadata must be a dictionary")
  135. # Validate metadata schema based on doc_type
  136. if args["doc_type"] != "others":
  137. metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[args["doc_type"]]
  138. for key, value in args["doc_metadata"].items():
  139. if key in metadata_schema and not isinstance(value, metadata_schema[key]):
  140. raise InvalidMetadataError(f"Invalid type for metadata field {key}")
  141. # set to MetaDataConfig
  142. args["metadata"] = {"doc_type": args["doc_type"], "doc_metadata": args["doc_metadata"]}
  143. if args["text"]:
  144. text = args.get("text")
  145. name = args.get("name")
  146. if text is None or name is None:
  147. raise ValueError("Both text and name must be strings.")
  148. upload_file = FileService.upload_text(text=str(text), text_name=str(name))
  149. data_source = {
  150. "type": "upload_file",
  151. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  152. }
  153. args["data_source"] = data_source
  154. # validate args
  155. args["original_document_id"] = str(document_id)
  156. knowledge_config = KnowledgeConfig(**args)
  157. DocumentService.document_create_args_validate(knowledge_config)
  158. try:
  159. documents, batch = DocumentService.save_document_with_dataset_id(
  160. dataset=dataset,
  161. knowledge_config=knowledge_config,
  162. account=current_user,
  163. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  164. created_from="api",
  165. )
  166. except ProviderTokenNotInitError as ex:
  167. raise ProviderNotInitializeError(ex.description)
  168. document = documents[0]
  169. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
  170. return documents_and_batch_fields, 200
  171. class DocumentAddByFileApi(DatasetApiResource):
  172. """Resource for documents."""
  173. @cloud_edition_billing_resource_check("vector_space", "dataset")
  174. @cloud_edition_billing_resource_check("documents", "dataset")
  175. def post(self, tenant_id, dataset_id):
  176. """Create document by upload file."""
  177. args = {}
  178. if "data" in request.form:
  179. args = json.loads(request.form["data"])
  180. if "doc_form" not in args:
  181. args["doc_form"] = "text_model"
  182. if "doc_language" not in args:
  183. args["doc_language"] = "English"
  184. # Validate metadata if provided
  185. if args.get("doc_type") or args.get("doc_metadata"):
  186. if not args.get("doc_type") or not args.get("doc_metadata"):
  187. raise InvalidMetadataError("Both doc_type and doc_metadata must be provided when adding metadata")
  188. if args["doc_type"] not in DocumentService.DOCUMENT_METADATA_SCHEMA:
  189. raise InvalidMetadataError(
  190. "Invalid doc_type. Must be one of: " + ", ".join(DocumentService.DOCUMENT_METADATA_SCHEMA.keys())
  191. )
  192. if not isinstance(args["doc_metadata"], dict):
  193. raise InvalidMetadataError("doc_metadata must be a dictionary")
  194. # Validate metadata schema based on doc_type
  195. if args["doc_type"] != "others":
  196. metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[args["doc_type"]]
  197. for key, value in args["doc_metadata"].items():
  198. if key in metadata_schema and not isinstance(value, metadata_schema[key]):
  199. raise InvalidMetadataError(f"Invalid type for metadata field {key}")
  200. # set to MetaDataConfig
  201. args["metadata"] = {"doc_type": args["doc_type"], "doc_metadata": args["doc_metadata"]}
  202. # get dataset info
  203. dataset_id = str(dataset_id)
  204. tenant_id = str(tenant_id)
  205. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  206. if not dataset:
  207. raise ValueError("Dataset is not exist.")
  208. if not dataset.indexing_technique and not args.get("indexing_technique"):
  209. raise ValueError("indexing_technique is required.")
  210. # save file info
  211. file = request.files["file"]
  212. # check file
  213. if "file" not in request.files:
  214. raise NoFileUploadedError()
  215. if len(request.files) > 1:
  216. raise TooManyFilesError()
  217. if not file.filename:
  218. raise FilenameNotExistsError
  219. upload_file = FileService.upload_file(
  220. filename=file.filename,
  221. content=file.read(),
  222. mimetype=file.mimetype,
  223. user=current_user,
  224. source="datasets",
  225. )
  226. data_source = {
  227. "type": "upload_file",
  228. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  229. }
  230. args["data_source"] = data_source
  231. # validate args
  232. knowledge_config = KnowledgeConfig(**args)
  233. DocumentService.document_create_args_validate(knowledge_config)
  234. try:
  235. documents, batch = DocumentService.save_document_with_dataset_id(
  236. dataset=dataset,
  237. knowledge_config=knowledge_config,
  238. account=dataset.created_by_account,
  239. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  240. created_from="api",
  241. )
  242. except ProviderTokenNotInitError as ex:
  243. raise ProviderNotInitializeError(ex.description)
  244. document = documents[0]
  245. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
  246. return documents_and_batch_fields, 200
  247. class DocumentUpdateByFileApi(DatasetApiResource):
  248. """Resource for update documents."""
  249. @cloud_edition_billing_resource_check("vector_space", "dataset")
  250. def post(self, tenant_id, dataset_id, document_id):
  251. """Update document by upload file."""
  252. args = {}
  253. if "data" in request.form:
  254. args = json.loads(request.form["data"])
  255. if "doc_form" not in args:
  256. args["doc_form"] = "text_model"
  257. if "doc_language" not in args:
  258. args["doc_language"] = "English"
  259. # Validate metadata if provided
  260. if args.get("doc_type") or args.get("doc_metadata"):
  261. if not args.get("doc_type") or not args.get("doc_metadata"):
  262. raise InvalidMetadataError("Both doc_type and doc_metadata must be provided when adding metadata")
  263. if args["doc_type"] not in DocumentService.DOCUMENT_METADATA_SCHEMA:
  264. raise InvalidMetadataError(
  265. "Invalid doc_type. Must be one of: " + ", ".join(DocumentService.DOCUMENT_METADATA_SCHEMA.keys())
  266. )
  267. if not isinstance(args["doc_metadata"], dict):
  268. raise InvalidMetadataError("doc_metadata must be a dictionary")
  269. # Validate metadata schema based on doc_type
  270. if args["doc_type"] != "others":
  271. metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[args["doc_type"]]
  272. for key, value in args["doc_metadata"].items():
  273. if key in metadata_schema and not isinstance(value, metadata_schema[key]):
  274. raise InvalidMetadataError(f"Invalid type for metadata field {key}")
  275. # set to MetaDataConfig
  276. args["metadata"] = {"doc_type": args["doc_type"], "doc_metadata": args["doc_metadata"]}
  277. # get dataset info
  278. dataset_id = str(dataset_id)
  279. tenant_id = str(tenant_id)
  280. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  281. if not dataset:
  282. raise ValueError("Dataset is not exist.")
  283. if "file" in request.files:
  284. # save file info
  285. file = request.files["file"]
  286. if len(request.files) > 1:
  287. raise TooManyFilesError()
  288. if not file.filename:
  289. raise FilenameNotExistsError
  290. try:
  291. upload_file = FileService.upload_file(
  292. filename=file.filename,
  293. content=file.read(),
  294. mimetype=file.mimetype,
  295. user=current_user,
  296. source="datasets",
  297. )
  298. except services.errors.file.FileTooLargeError as file_too_large_error:
  299. raise FileTooLargeError(file_too_large_error.description)
  300. except services.errors.file.UnsupportedFileTypeError:
  301. raise UnsupportedFileTypeError()
  302. data_source = {
  303. "type": "upload_file",
  304. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  305. }
  306. args["data_source"] = data_source
  307. # validate args
  308. args["original_document_id"] = str(document_id)
  309. knowledge_config = KnowledgeConfig(**args)
  310. DocumentService.document_create_args_validate(knowledge_config)
  311. try:
  312. documents, batch = DocumentService.save_document_with_dataset_id(
  313. dataset=dataset,
  314. knowledge_config=knowledge_config,
  315. account=dataset.created_by_account,
  316. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  317. created_from="api",
  318. )
  319. except ProviderTokenNotInitError as ex:
  320. raise ProviderNotInitializeError(ex.description)
  321. document = documents[0]
  322. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": document.batch}
  323. return documents_and_batch_fields, 200
  324. class DocumentDeleteApi(DatasetApiResource):
  325. def delete(self, tenant_id, dataset_id, document_id):
  326. """Delete document."""
  327. document_id = str(document_id)
  328. dataset_id = str(dataset_id)
  329. tenant_id = str(tenant_id)
  330. # get dataset info
  331. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  332. if not dataset:
  333. raise ValueError("Dataset is not exist.")
  334. document = DocumentService.get_document(dataset.id, document_id)
  335. # 404 if document not found
  336. if document is None:
  337. raise NotFound("Document Not Exists.")
  338. # 403 if document is archived
  339. if DocumentService.check_archived(document):
  340. raise ArchivedDocumentImmutableError()
  341. try:
  342. # delete document
  343. DocumentService.delete_document(document)
  344. except services.errors.document.DocumentIndexingError:
  345. raise DocumentIndexingError("Cannot delete document during indexing.")
  346. return {"result": "success"}, 200
  347. class DocumentListApi(DatasetApiResource):
  348. def get(self, tenant_id, dataset_id):
  349. dataset_id = str(dataset_id)
  350. tenant_id = str(tenant_id)
  351. page = request.args.get("page", default=1, type=int)
  352. limit = request.args.get("limit", default=20, type=int)
  353. search = request.args.get("keyword", default=None, type=str)
  354. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  355. if not dataset:
  356. raise NotFound("Dataset not found.")
  357. query = Document.query.filter_by(dataset_id=str(dataset_id), tenant_id=tenant_id)
  358. if search:
  359. search = f"%{search}%"
  360. query = query.filter(Document.name.like(search))
  361. query = query.order_by(desc(Document.created_at))
  362. paginated_documents = query.paginate(page=page, per_page=limit, max_per_page=100, error_out=False)
  363. documents = paginated_documents.items
  364. response = {
  365. "data": marshal(documents, document_fields),
  366. "has_more": len(documents) == limit,
  367. "limit": limit,
  368. "total": paginated_documents.total,
  369. "page": page,
  370. }
  371. return response
  372. class DocumentIndexingStatusApi(DatasetApiResource):
  373. def get(self, tenant_id, dataset_id, batch):
  374. dataset_id = str(dataset_id)
  375. batch = str(batch)
  376. tenant_id = str(tenant_id)
  377. # get dataset
  378. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  379. if not dataset:
  380. raise NotFound("Dataset not found.")
  381. # get documents
  382. documents = DocumentService.get_batch_documents(dataset_id, batch)
  383. if not documents:
  384. raise NotFound("Documents not found.")
  385. documents_status = []
  386. for document in documents:
  387. completed_segments = DocumentSegment.query.filter(
  388. DocumentSegment.completed_at.isnot(None),
  389. DocumentSegment.document_id == str(document.id),
  390. DocumentSegment.status != "re_segment",
  391. ).count()
  392. total_segments = DocumentSegment.query.filter(
  393. DocumentSegment.document_id == str(document.id), DocumentSegment.status != "re_segment"
  394. ).count()
  395. document.completed_segments = completed_segments
  396. document.total_segments = total_segments
  397. if document.is_paused:
  398. document.indexing_status = "paused"
  399. documents_status.append(marshal(document, document_status_fields))
  400. data = {"data": documents_status}
  401. return data
  402. api.add_resource(
  403. DocumentAddByTextApi,
  404. "/datasets/<uuid:dataset_id>/document/create_by_text",
  405. "/datasets/<uuid:dataset_id>/document/create-by-text",
  406. )
  407. api.add_resource(
  408. DocumentAddByFileApi,
  409. "/datasets/<uuid:dataset_id>/document/create_by_file",
  410. "/datasets/<uuid:dataset_id>/document/create-by-file",
  411. )
  412. api.add_resource(
  413. DocumentUpdateByTextApi,
  414. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update_by_text",
  415. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update-by-text",
  416. )
  417. api.add_resource(
  418. DocumentUpdateByFileApi,
  419. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update_by_file",
  420. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update-by-file",
  421. )
  422. api.add_resource(DocumentDeleteApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>")
  423. api.add_resource(DocumentListApi, "/datasets/<uuid:dataset_id>/documents")
  424. api.add_resource(DocumentIndexingStatusApi, "/datasets/<uuid:dataset_id>/documents/<string:batch>/indexing-status")