123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581 |
- import json
- import logging
- import re
- from typing import Literal, Union, Generator, Dict, List
- from core.entities.application_entities import AgentPromptEntity, AgentScratchpadUnit
- from core.application_queue_manager import PublishFrom
- from core.model_runtime.utils.encoders import jsonable_encoder
- from core.model_runtime.entities.message_entities import PromptMessageTool, PromptMessage, \
- UserPromptMessage, SystemPromptMessage, AssistantPromptMessage
- from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage, LLMResultChunk, LLMResultChunkDelta
- from core.model_manager import ModelInstance
- from core.tools.errors import ToolInvokeError, ToolNotFoundError, \
- ToolNotSupportedError, ToolProviderNotFoundError, ToolParamterValidationError, \
- ToolProviderCredentialValidationError
- from core.features.assistant_base_runner import BaseAssistantApplicationRunner
- from models.model import Conversation, Message
- class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
- def run(self, model_instance: ModelInstance,
- conversation: Conversation,
- message: Message,
- query: str,
- ) -> Union[Generator, LLMResult]:
- """
- Run Cot agent application
- """
- app_orchestration_config = self.app_orchestration_config
- self._repacket_app_orchestration_config(app_orchestration_config)
- agent_scratchpad: List[AgentScratchpadUnit] = []
- # check model mode
- if self.app_orchestration_config.model_config.mode == "completion":
- # TODO: stop words
- if 'Observation' not in app_orchestration_config.model_config.stop:
- app_orchestration_config.model_config.stop.append('Observation')
- iteration_step = 1
- max_iteration_steps = min(self.app_orchestration_config.agent.max_iteration, 5) + 1
- prompt_messages = self.history_prompt_messages
- # convert tools into ModelRuntime Tool format
- prompt_messages_tools: List[PromptMessageTool] = []
- tool_instances = {}
- for tool in self.app_orchestration_config.agent.tools if self.app_orchestration_config.agent else []:
- try:
- prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
- except Exception:
- # api tool may be deleted
- continue
- # save tool entity
- tool_instances[tool.tool_name] = tool_entity
- # save prompt tool
- prompt_messages_tools.append(prompt_tool)
- # convert dataset tools into ModelRuntime Tool format
- for dataset_tool in self.dataset_tools:
- prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
- # save prompt tool
- prompt_messages_tools.append(prompt_tool)
- # save tool entity
- tool_instances[dataset_tool.identity.name] = dataset_tool
- function_call_state = True
- llm_usage = {
- 'usage': None
- }
- final_answer = ''
- def increse_usage(final_llm_usage_dict: Dict[str, LLMUsage], usage: LLMUsage):
- if not final_llm_usage_dict['usage']:
- final_llm_usage_dict['usage'] = usage
- else:
- llm_usage = final_llm_usage_dict['usage']
- llm_usage.prompt_tokens += usage.prompt_tokens
- llm_usage.completion_tokens += usage.completion_tokens
- llm_usage.prompt_price += usage.prompt_price
- llm_usage.completion_price += usage.completion_price
- while function_call_state and iteration_step <= max_iteration_steps:
- # continue to run until there is not any tool call
- function_call_state = False
- if iteration_step == max_iteration_steps:
- # the last iteration, remove all tools
- prompt_messages_tools = []
- message_file_ids = []
- agent_thought = self.create_agent_thought(
- message_id=message.id,
- message='',
- tool_name='',
- tool_input='',
- messages_ids=message_file_ids
- )
- if iteration_step > 1:
- self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
- # update prompt messages
- prompt_messages = self._originze_cot_prompt_messages(
- mode=app_orchestration_config.model_config.mode,
- prompt_messages=prompt_messages,
- tools=prompt_messages_tools,
- agent_scratchpad=agent_scratchpad,
- agent_prompt_message=app_orchestration_config.agent.prompt,
- instruction=app_orchestration_config.prompt_template.simple_prompt_template,
- input=query
- )
- # recale llm max tokens
- self.recale_llm_max_tokens(self.model_config, prompt_messages)
- # invoke model
- llm_result: LLMResult = model_instance.invoke_llm(
- prompt_messages=prompt_messages,
- model_parameters=app_orchestration_config.model_config.parameters,
- tools=[],
- stop=app_orchestration_config.model_config.stop,
- stream=False,
- user=self.user_id,
- callbacks=[],
- )
- # check llm result
- if not llm_result:
- raise ValueError("failed to invoke llm")
- # get scratchpad
- scratchpad = self._extract_response_scratchpad(llm_result.message.content)
- agent_scratchpad.append(scratchpad)
-
- # get llm usage
- if llm_result.usage:
- increse_usage(llm_usage, llm_result.usage)
-
- # publish agent thought if it's first iteration
- if iteration_step == 1:
- self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
- self.save_agent_thought(agent_thought=agent_thought,
- tool_name=scratchpad.action.action_name if scratchpad.action else '',
- tool_input=scratchpad.action.action_input if scratchpad.action else '',
- thought=scratchpad.thought,
- observation='',
- answer=llm_result.message.content,
- messages_ids=[],
- llm_usage=llm_result.usage)
-
- if scratchpad.action and scratchpad.action.action_name.lower() != "final answer":
- self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
- # publish agent thought if it's not empty and there is a action
- if scratchpad.thought and scratchpad.action:
- # check if final answer
- if not scratchpad.action.action_name.lower() == "final answer":
- yield LLMResultChunk(
- model=model_instance.model,
- prompt_messages=prompt_messages,
- delta=LLMResultChunkDelta(
- index=0,
- message=AssistantPromptMessage(
- content=scratchpad.thought
- ),
- usage=llm_result.usage,
- ),
- system_fingerprint=''
- )
- if not scratchpad.action:
- # failed to extract action, return final answer directly
- final_answer = scratchpad.agent_response or ''
- else:
- if scratchpad.action.action_name.lower() == "final answer":
- # action is final answer, return final answer directly
- try:
- final_answer = scratchpad.action.action_input if \
- isinstance(scratchpad.action.action_input, str) else \
- json.dumps(scratchpad.action.action_input)
- except json.JSONDecodeError:
- final_answer = f'{scratchpad.action.action_input}'
- else:
- function_call_state = True
- # action is tool call, invoke tool
- tool_call_name = scratchpad.action.action_name
- tool_call_args = scratchpad.action.action_input
- tool_instance = tool_instances.get(tool_call_name)
- if not tool_instance:
- answer = f"there is not a tool named {tool_call_name}"
- self.save_agent_thought(agent_thought=agent_thought,
- tool_name='',
- tool_input='',
- thought=None,
- observation=answer,
- answer=answer,
- messages_ids=[])
- self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
- else:
- # invoke tool
- error_response = None
- try:
- tool_response = tool_instance.invoke(
- user_id=self.user_id,
- tool_paramters=tool_call_args if isinstance(tool_call_args, dict) else json.loads(tool_call_args)
- )
- # transform tool response to llm friendly response
- tool_response = self.transform_tool_invoke_messages(tool_response)
- # extract binary data from tool invoke message
- binary_files = self.extract_tool_response_binary(tool_response)
- # create message file
- message_files = self.create_message_files(binary_files)
- # publish files
- for message_file, save_as in message_files:
- if save_as:
- self.variables_pool.set_file(tool_name=tool_call_name,
- value=message_file.id,
- name=save_as)
- self.queue_manager.publish_message_file(message_file, PublishFrom.APPLICATION_MANAGER)
- message_file_ids = [message_file.id for message_file, _ in message_files]
- except ToolProviderCredentialValidationError as e:
- error_response = f"Plese check your tool provider credentials"
- except (
- ToolNotFoundError, ToolNotSupportedError, ToolProviderNotFoundError
- ) as e:
- error_response = f"there is not a tool named {tool_call_name}"
- except (
- ToolParamterValidationError
- ) as e:
- error_response = f"tool paramters validation error: {e}, please check your tool paramters"
- except ToolInvokeError as e:
- error_response = f"tool invoke error: {e}"
- except Exception as e:
- error_response = f"unknown error: {e}"
- if error_response:
- observation = error_response
- else:
- observation = self._convert_tool_response_to_str(tool_response)
- # save scratchpad
- scratchpad.observation = observation
- scratchpad.agent_response = llm_result.message.content
- # save agent thought
- self.save_agent_thought(
- agent_thought=agent_thought,
- tool_name=tool_call_name,
- tool_input=tool_call_args,
- thought=None,
- observation=observation,
- answer=llm_result.message.content,
- messages_ids=message_file_ids,
- )
- self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
- # update prompt tool message
- for prompt_tool in prompt_messages_tools:
- self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
- iteration_step += 1
- yield LLMResultChunk(
- model=model_instance.model,
- prompt_messages=prompt_messages,
- delta=LLMResultChunkDelta(
- index=0,
- message=AssistantPromptMessage(
- content=final_answer
- ),
- usage=llm_usage['usage']
- ),
- system_fingerprint=''
- )
- # save agent thought
- self.save_agent_thought(
- agent_thought=agent_thought,
- tool_name='',
- tool_input='',
- thought=final_answer,
- observation='',
- answer=final_answer,
- messages_ids=[]
- )
- self.update_db_variables(self.variables_pool, self.db_variables_pool)
- # publish end event
- self.queue_manager.publish_message_end(LLMResult(
- model=model_instance.model,
- prompt_messages=prompt_messages,
- message=AssistantPromptMessage(
- content=final_answer
- ),
- usage=llm_usage['usage'],
- system_fingerprint=''
- ), PublishFrom.APPLICATION_MANAGER)
- def _extract_response_scratchpad(self, content: str) -> AgentScratchpadUnit:
- """
- extract response from llm response
- """
- def extra_quotes() -> AgentScratchpadUnit:
- agent_response = content
- # try to extract all quotes
- pattern = re.compile(r'```(.*?)```', re.DOTALL)
- quotes = pattern.findall(content)
- # try to extract action from end to start
- for i in range(len(quotes) - 1, 0, -1):
- """
- 1. use json load to parse action
- 2. use plain text `Action: xxx` to parse action
- """
- try:
- action = json.loads(quotes[i].replace('```', ''))
- action_name = action.get("action")
- action_input = action.get("action_input")
- agent_thought = agent_response.replace(quotes[i], '')
- if action_name and action_input:
- return AgentScratchpadUnit(
- agent_response=content,
- thought=agent_thought,
- action_str=quotes[i],
- action=AgentScratchpadUnit.Action(
- action_name=action_name,
- action_input=action_input,
- )
- )
- except:
- # try to parse action from plain text
- action_name = re.findall(r'action: (.*)', quotes[i], re.IGNORECASE)
- action_input = re.findall(r'action input: (.*)', quotes[i], re.IGNORECASE)
- # delete action from agent response
- agent_thought = agent_response.replace(quotes[i], '')
- # remove extra quotes
- agent_thought = re.sub(r'```(json)*\n*```', '', agent_thought, flags=re.DOTALL)
- # remove Action: xxx from agent thought
- agent_thought = re.sub(r'Action:.*', '', agent_thought, flags=re.IGNORECASE)
- if action_name and action_input:
- return AgentScratchpadUnit(
- agent_response=content,
- thought=agent_thought,
- action_str=quotes[i],
- action=AgentScratchpadUnit.Action(
- action_name=action_name[0],
- action_input=action_input[0],
- )
- )
- def extra_json():
- agent_response = content
- # try to extract all json
- structures, pair_match_stack = [], []
- started_at, end_at = 0, 0
- for i in range(len(content)):
- if content[i] == '{':
- pair_match_stack.append(i)
- if len(pair_match_stack) == 1:
- started_at = i
- elif content[i] == '}':
- begin = pair_match_stack.pop()
- if not pair_match_stack:
- end_at = i + 1
- structures.append((content[begin:i+1], (started_at, end_at)))
- # handle the last character
- if pair_match_stack:
- end_at = len(content)
- structures.append((content[pair_match_stack[0]:], (started_at, end_at)))
-
- for i in range(len(structures), 0, -1):
- try:
- json_content, (started_at, end_at) = structures[i - 1]
- action = json.loads(json_content)
- action_name = action.get("action")
- action_input = action.get("action_input")
- # delete json content from agent response
- agent_thought = agent_response[:started_at] + agent_response[end_at:]
- # remove extra quotes like ```(json)*\n\n```
- agent_thought = re.sub(r'```(json)*\n*```', '', agent_thought, flags=re.DOTALL)
- # remove Action: xxx from agent thought
- agent_thought = re.sub(r'Action:.*', '', agent_thought, flags=re.IGNORECASE)
- if action_name and action_input:
- return AgentScratchpadUnit(
- agent_response=content,
- thought=agent_thought,
- action_str=json_content,
- action=AgentScratchpadUnit.Action(
- action_name=action_name,
- action_input=action_input,
- )
- )
- except:
- pass
-
- agent_scratchpad = extra_quotes()
- if agent_scratchpad:
- return agent_scratchpad
- agent_scratchpad = extra_json()
- if agent_scratchpad:
- return agent_scratchpad
-
- return AgentScratchpadUnit(
- agent_response=content,
- thought=content,
- action_str='',
- action=None
- )
-
- def _check_cot_prompt_messages(self, mode: Literal["completion", "chat"],
- agent_prompt_message: AgentPromptEntity,
- ):
- """
- check chain of thought prompt messages, a standard prompt message is like:
- Respond to the human as helpfully and accurately as possible.
- {{instruction}}
- You have access to the following tools:
- {{tools}}
- Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
- Valid action values: "Final Answer" or {{tool_names}}
- Provide only ONE action per $JSON_BLOB, as shown:
- ```
- {
- "action": $TOOL_NAME,
- "action_input": $ACTION_INPUT
- }
- ```
- """
- # parse agent prompt message
- first_prompt = agent_prompt_message.first_prompt
- next_iteration = agent_prompt_message.next_iteration
- if not isinstance(first_prompt, str) or not isinstance(next_iteration, str):
- raise ValueError(f"first_prompt or next_iteration is required in CoT agent mode")
-
- # check instruction, tools, and tool_names slots
- if not first_prompt.find("{{instruction}}") >= 0:
- raise ValueError("{{instruction}} is required in first_prompt")
- if not first_prompt.find("{{tools}}") >= 0:
- raise ValueError("{{tools}} is required in first_prompt")
- if not first_prompt.find("{{tool_names}}") >= 0:
- raise ValueError("{{tool_names}} is required in first_prompt")
-
- if mode == "completion":
- if not first_prompt.find("{{query}}") >= 0:
- raise ValueError("{{query}} is required in first_prompt")
- if not first_prompt.find("{{agent_scratchpad}}") >= 0:
- raise ValueError("{{agent_scratchpad}} is required in first_prompt")
-
- if mode == "completion":
- if not next_iteration.find("{{observation}}") >= 0:
- raise ValueError("{{observation}} is required in next_iteration")
-
- def _convert_strachpad_list_to_str(self, agent_scratchpad: List[AgentScratchpadUnit]) -> str:
- """
- convert agent scratchpad list to str
- """
- next_iteration = self.app_orchestration_config.agent.prompt.next_iteration
- result = ''
- for scratchpad in agent_scratchpad:
- result += scratchpad.thought + next_iteration.replace("{{observation}}", scratchpad.observation or '') + "\n"
- return result
-
- def _originze_cot_prompt_messages(self, mode: Literal["completion", "chat"],
- prompt_messages: List[PromptMessage],
- tools: List[PromptMessageTool],
- agent_scratchpad: List[AgentScratchpadUnit],
- agent_prompt_message: AgentPromptEntity,
- instruction: str,
- input: str,
- ) -> List[PromptMessage]:
- """
- originze chain of thought prompt messages, a standard prompt message is like:
- Respond to the human as helpfully and accurately as possible.
- {{instruction}}
- You have access to the following tools:
- {{tools}}
- Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
- Valid action values: "Final Answer" or {{tool_names}}
- Provide only ONE action per $JSON_BLOB, as shown:
- ```
- {{{{
- "action": $TOOL_NAME,
- "action_input": $ACTION_INPUT
- }}}}
- ```
- """
- self._check_cot_prompt_messages(mode, agent_prompt_message)
- # parse agent prompt message
- first_prompt = agent_prompt_message.first_prompt
- # parse tools
- tools_str = self._jsonify_tool_prompt_messages(tools)
- # parse tools name
- tool_names = '"' + '","'.join([tool.name for tool in tools]) + '"'
- # get system message
- system_message = first_prompt.replace("{{instruction}}", instruction) \
- .replace("{{tools}}", tools_str) \
- .replace("{{tool_names}}", tool_names)
- # originze prompt messages
- if mode == "chat":
- # override system message
- overrided = False
- prompt_messages = prompt_messages.copy()
- for prompt_message in prompt_messages:
- if isinstance(prompt_message, SystemPromptMessage):
- prompt_message.content = system_message
- overrided = True
- break
- if not overrided:
- prompt_messages.insert(0, SystemPromptMessage(
- content=system_message,
- ))
- # add assistant message
- if len(agent_scratchpad) > 0:
- prompt_messages.append(AssistantPromptMessage(
- content=(agent_scratchpad[-1].thought or '')
- ))
-
- # add user message
- if len(agent_scratchpad) > 0:
- prompt_messages.append(UserPromptMessage(
- content=(agent_scratchpad[-1].observation or ''),
- ))
- return prompt_messages
- elif mode == "completion":
- # parse agent scratchpad
- agent_scratchpad_str = self._convert_strachpad_list_to_str(agent_scratchpad)
- # parse prompt messages
- return [UserPromptMessage(
- content=first_prompt.replace("{{instruction}}", instruction)
- .replace("{{tools}}", tools_str)
- .replace("{{tool_names}}", tool_names)
- .replace("{{query}}", input)
- .replace("{{agent_scratchpad}}", agent_scratchpad_str),
- )]
- else:
- raise ValueError(f"mode {mode} is not supported")
-
- def _jsonify_tool_prompt_messages(self, tools: list[PromptMessageTool]) -> str:
- """
- jsonify tool prompt messages
- """
- tools = jsonable_encoder(tools)
- try:
- return json.dumps(tools, ensure_ascii=False)
- except json.JSONDecodeError:
- return json.dumps(tools)
|