123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427 |
- import json
- import logging
- from collections.abc import Generator
- from typing import Any, Union
- from core.application_queue_manager import PublishFrom
- from core.features.assistant_base_runner import BaseAssistantApplicationRunner
- from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
- from core.model_runtime.entities.message_entities import (
- AssistantPromptMessage,
- PromptMessage,
- PromptMessageTool,
- SystemPromptMessage,
- ToolPromptMessage,
- UserPromptMessage,
- )
- from core.tools.errors import (
- ToolInvokeError,
- ToolNotFoundError,
- ToolNotSupportedError,
- ToolParameterValidationError,
- ToolProviderCredentialValidationError,
- ToolProviderNotFoundError,
- )
- from models.model import Conversation, Message, MessageAgentThought
- logger = logging.getLogger(__name__)
- class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
- def run(self, conversation: Conversation,
- message: Message,
- query: str,
- ) -> Generator[LLMResultChunk, None, None]:
- """
- Run FunctionCall agent application
- """
- app_orchestration_config = self.app_orchestration_config
- prompt_template = self.app_orchestration_config.prompt_template.simple_prompt_template or ''
- prompt_messages = self.history_prompt_messages
- prompt_messages = self.organize_prompt_messages(
- prompt_template=prompt_template,
- query=query,
- prompt_messages=prompt_messages
- )
- # convert tools into ModelRuntime Tool format
- prompt_messages_tools: list[PromptMessageTool] = []
- tool_instances = {}
- for tool in self.app_orchestration_config.agent.tools if self.app_orchestration_config.agent else []:
- try:
- prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
- except Exception:
- # api tool may be deleted
- continue
- # save tool entity
- tool_instances[tool.tool_name] = tool_entity
- # save prompt tool
- prompt_messages_tools.append(prompt_tool)
- # convert dataset tools into ModelRuntime Tool format
- for dataset_tool in self.dataset_tools:
- prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
- # save prompt tool
- prompt_messages_tools.append(prompt_tool)
- # save tool entity
- tool_instances[dataset_tool.identity.name] = dataset_tool
- iteration_step = 1
- max_iteration_steps = min(app_orchestration_config.agent.max_iteration, 5) + 1
- # continue to run until there is not any tool call
- function_call_state = True
- agent_thoughts: list[MessageAgentThought] = []
- llm_usage = {
- 'usage': None
- }
- final_answer = ''
- def increase_usage(final_llm_usage_dict: dict[str, LLMUsage], usage: LLMUsage):
- if not final_llm_usage_dict['usage']:
- final_llm_usage_dict['usage'] = usage
- else:
- llm_usage = final_llm_usage_dict['usage']
- llm_usage.prompt_tokens += usage.prompt_tokens
- llm_usage.completion_tokens += usage.completion_tokens
- llm_usage.prompt_price += usage.prompt_price
- llm_usage.completion_price += usage.completion_price
- model_instance = self.model_instance
- while function_call_state and iteration_step <= max_iteration_steps:
- function_call_state = False
- if iteration_step == max_iteration_steps:
- # the last iteration, remove all tools
- prompt_messages_tools = []
- message_file_ids = []
- agent_thought = self.create_agent_thought(
- message_id=message.id,
- message='',
- tool_name='',
- tool_input='',
- messages_ids=message_file_ids
- )
- # recalc llm max tokens
- self.recalc_llm_max_tokens(self.model_config, prompt_messages)
- # invoke model
- chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
- prompt_messages=prompt_messages,
- model_parameters=app_orchestration_config.model_config.parameters,
- tools=prompt_messages_tools,
- stop=app_orchestration_config.model_config.stop,
- stream=self.stream_tool_call,
- user=self.user_id,
- callbacks=[],
- )
- tool_calls: list[tuple[str, str, dict[str, Any]]] = []
- # save full response
- response = ''
- # save tool call names and inputs
- tool_call_names = ''
- tool_call_inputs = ''
- current_llm_usage = None
- if self.stream_tool_call:
- is_first_chunk = True
- for chunk in chunks:
- if is_first_chunk:
- self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
- is_first_chunk = False
- # check if there is any tool call
- if self.check_tool_calls(chunk):
- function_call_state = True
- tool_calls.extend(self.extract_tool_calls(chunk))
- tool_call_names = ';'.join([tool_call[1] for tool_call in tool_calls])
- try:
- tool_call_inputs = json.dumps({
- tool_call[1]: tool_call[2] for tool_call in tool_calls
- }, ensure_ascii=False)
- except json.JSONDecodeError as e:
- # ensure ascii to avoid encoding error
- tool_call_inputs = json.dumps({
- tool_call[1]: tool_call[2] for tool_call in tool_calls
- })
- if chunk.delta.message and chunk.delta.message.content:
- if isinstance(chunk.delta.message.content, list):
- for content in chunk.delta.message.content:
- response += content.data
- else:
- response += chunk.delta.message.content
- if chunk.delta.usage:
- increase_usage(llm_usage, chunk.delta.usage)
- current_llm_usage = chunk.delta.usage
- yield chunk
- else:
- result: LLMResult = chunks
- # check if there is any tool call
- if self.check_blocking_tool_calls(result):
- function_call_state = True
- tool_calls.extend(self.extract_blocking_tool_calls(result))
- tool_call_names = ';'.join([tool_call[1] for tool_call in tool_calls])
- try:
- tool_call_inputs = json.dumps({
- tool_call[1]: tool_call[2] for tool_call in tool_calls
- }, ensure_ascii=False)
- except json.JSONDecodeError as e:
- # ensure ascii to avoid encoding error
- tool_call_inputs = json.dumps({
- tool_call[1]: tool_call[2] for tool_call in tool_calls
- })
- if result.usage:
- increase_usage(llm_usage, result.usage)
- current_llm_usage = result.usage
- if result.message and result.message.content:
- if isinstance(result.message.content, list):
- for content in result.message.content:
- response += content.data
- else:
- response += result.message.content
- if not result.message.content:
- result.message.content = ''
- self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
-
- yield LLMResultChunk(
- model=model_instance.model,
- prompt_messages=result.prompt_messages,
- system_fingerprint=result.system_fingerprint,
- delta=LLMResultChunkDelta(
- index=0,
- message=result.message,
- usage=result.usage,
- )
- )
- if tool_calls:
- prompt_messages.append(AssistantPromptMessage(
- content='',
- name='',
- tool_calls=[AssistantPromptMessage.ToolCall(
- id=tool_call[0],
- type='function',
- function=AssistantPromptMessage.ToolCall.ToolCallFunction(
- name=tool_call[1],
- arguments=json.dumps(tool_call[2], ensure_ascii=False)
- )
- ) for tool_call in tool_calls]
- ))
- # save thought
- self.save_agent_thought(
- agent_thought=agent_thought,
- tool_name=tool_call_names,
- tool_input=tool_call_inputs,
- thought=response,
- observation=None,
- answer=response,
- messages_ids=[],
- llm_usage=current_llm_usage
- )
- self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
-
- final_answer += response + '\n'
- # update prompt messages
- if response.strip():
- prompt_messages.append(AssistantPromptMessage(
- content=response,
- ))
-
- # call tools
- tool_responses = []
- for tool_call_id, tool_call_name, tool_call_args in tool_calls:
- tool_instance = tool_instances.get(tool_call_name)
- if not tool_instance:
- tool_response = {
- "tool_call_id": tool_call_id,
- "tool_call_name": tool_call_name,
- "tool_response": f"there is not a tool named {tool_call_name}"
- }
- tool_responses.append(tool_response)
- else:
- # invoke tool
- error_response = None
- try:
- tool_invoke_message = tool_instance.invoke(
- user_id=self.user_id,
- tool_parameters=tool_call_args,
- )
- # transform tool invoke message to get LLM friendly message
- tool_invoke_message = self.transform_tool_invoke_messages(tool_invoke_message)
- # extract binary data from tool invoke message
- binary_files = self.extract_tool_response_binary(tool_invoke_message)
- # create message file
- message_files = self.create_message_files(binary_files)
- # publish files
- for message_file, save_as in message_files:
- if save_as:
- self.variables_pool.set_file(tool_name=tool_call_name, value=message_file.id, name=save_as)
- # publish message file
- self.queue_manager.publish_message_file(message_file, PublishFrom.APPLICATION_MANAGER)
- # add message file ids
- message_file_ids.append(message_file.id)
-
- except ToolProviderCredentialValidationError as e:
- error_response = "Please check your tool provider credentials"
- except (
- ToolNotFoundError, ToolNotSupportedError, ToolProviderNotFoundError
- ) as e:
- error_response = f"there is not a tool named {tool_call_name}"
- except (
- ToolParameterValidationError
- ) as e:
- error_response = f"tool parameters validation error: {e}, please check your tool parameters"
- except ToolInvokeError as e:
- error_response = f"tool invoke error: {e}"
- except Exception as e:
- error_response = f"unknown error: {e}"
- if error_response:
- observation = error_response
- tool_response = {
- "tool_call_id": tool_call_id,
- "tool_call_name": tool_call_name,
- "tool_response": error_response
- }
- tool_responses.append(tool_response)
- else:
- observation = self._convert_tool_response_to_str(tool_invoke_message)
- tool_response = {
- "tool_call_id": tool_call_id,
- "tool_call_name": tool_call_name,
- "tool_response": observation
- }
- tool_responses.append(tool_response)
- prompt_messages = self.organize_prompt_messages(
- prompt_template=prompt_template,
- query=None,
- tool_call_id=tool_call_id,
- tool_call_name=tool_call_name,
- tool_response=tool_response['tool_response'],
- prompt_messages=prompt_messages,
- )
- if len(tool_responses) > 0:
- # save agent thought
- self.save_agent_thought(
- agent_thought=agent_thought,
- tool_name=None,
- tool_input=None,
- thought=None,
- observation=tool_response['tool_response'],
- answer=None,
- messages_ids=message_file_ids
- )
- self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
- # update prompt tool
- for prompt_tool in prompt_messages_tools:
- self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
- iteration_step += 1
- self.update_db_variables(self.variables_pool, self.db_variables_pool)
- # publish end event
- self.queue_manager.publish_message_end(LLMResult(
- model=model_instance.model,
- prompt_messages=prompt_messages,
- message=AssistantPromptMessage(
- content=final_answer,
- ),
- usage=llm_usage['usage'] if llm_usage['usage'] else LLMUsage.empty_usage(),
- system_fingerprint=''
- ), PublishFrom.APPLICATION_MANAGER)
- def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool:
- """
- Check if there is any tool call in llm result chunk
- """
- if llm_result_chunk.delta.message.tool_calls:
- return True
- return False
-
- def check_blocking_tool_calls(self, llm_result: LLMResult) -> bool:
- """
- Check if there is any blocking tool call in llm result
- """
- if llm_result.message.tool_calls:
- return True
- return False
- def extract_tool_calls(self, llm_result_chunk: LLMResultChunk) -> Union[None, list[tuple[str, str, dict[str, Any]]]]:
- """
- Extract tool calls from llm result chunk
- Returns:
- List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
- """
- tool_calls = []
- for prompt_message in llm_result_chunk.delta.message.tool_calls:
- tool_calls.append((
- prompt_message.id,
- prompt_message.function.name,
- json.loads(prompt_message.function.arguments),
- ))
- return tool_calls
-
- def extract_blocking_tool_calls(self, llm_result: LLMResult) -> Union[None, list[tuple[str, str, dict[str, Any]]]]:
- """
- Extract blocking tool calls from llm result
- Returns:
- List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
- """
- tool_calls = []
- for prompt_message in llm_result.message.tool_calls:
- tool_calls.append((
- prompt_message.id,
- prompt_message.function.name,
- json.loads(prompt_message.function.arguments),
- ))
- return tool_calls
- def organize_prompt_messages(self, prompt_template: str,
- query: str = None,
- tool_call_id: str = None, tool_call_name: str = None, tool_response: str = None,
- prompt_messages: list[PromptMessage] = None
- ) -> list[PromptMessage]:
- """
- Organize prompt messages
- """
-
- if not prompt_messages:
- prompt_messages = [
- SystemPromptMessage(content=prompt_template),
- UserPromptMessage(content=query),
- ]
- else:
- if tool_response:
- prompt_messages = prompt_messages.copy()
- prompt_messages.append(
- ToolPromptMessage(
- content=tool_response,
- tool_call_id=tool_call_id,
- name=tool_call_name,
- )
- )
- return prompt_messages
|