datasets.py 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567
  1. import flask_restful
  2. from flask import current_app, request
  3. from flask_login import current_user
  4. from flask_restful import Resource, marshal, marshal_with, reqparse
  5. from werkzeug.exceptions import Forbidden, NotFound
  6. import services
  7. from controllers.console import api
  8. from controllers.console.apikey import api_key_fields, api_key_list
  9. from controllers.console.app.error import ProviderNotInitializeError
  10. from controllers.console.datasets.error import DatasetInUseError, DatasetNameDuplicateError
  11. from controllers.console.setup import setup_required
  12. from controllers.console.wraps import account_initialization_required
  13. from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
  14. from core.indexing_runner import IndexingRunner
  15. from core.model_runtime.entities.model_entities import ModelType
  16. from core.provider_manager import ProviderManager
  17. from core.rag.datasource.vdb.vector_type import VectorType
  18. from core.rag.extractor.entity.extract_setting import ExtractSetting
  19. from extensions.ext_database import db
  20. from fields.app_fields import related_app_list
  21. from fields.dataset_fields import dataset_detail_fields, dataset_query_detail_fields
  22. from fields.document_fields import document_status_fields
  23. from libs.login import login_required
  24. from models.dataset import Dataset, Document, DocumentSegment
  25. from models.model import ApiToken, UploadFile
  26. from services.dataset_service import DatasetService, DocumentService
  27. def _validate_name(name):
  28. if not name or len(name) < 1 or len(name) > 40:
  29. raise ValueError('Name must be between 1 to 40 characters.')
  30. return name
  31. def _validate_description_length(description):
  32. if len(description) > 400:
  33. raise ValueError('Description cannot exceed 400 characters.')
  34. return description
  35. class DatasetListApi(Resource):
  36. @setup_required
  37. @login_required
  38. @account_initialization_required
  39. def get(self):
  40. page = request.args.get('page', default=1, type=int)
  41. limit = request.args.get('limit', default=20, type=int)
  42. ids = request.args.getlist('ids')
  43. provider = request.args.get('provider', default="vendor")
  44. search = request.args.get('keyword', default=None, type=str)
  45. tag_ids = request.args.getlist('tag_ids')
  46. if ids:
  47. datasets, total = DatasetService.get_datasets_by_ids(ids, current_user.current_tenant_id)
  48. else:
  49. datasets, total = DatasetService.get_datasets(page, limit, provider,
  50. current_user.current_tenant_id, current_user, search, tag_ids)
  51. # check embedding setting
  52. provider_manager = ProviderManager()
  53. configurations = provider_manager.get_configurations(
  54. tenant_id=current_user.current_tenant_id
  55. )
  56. embedding_models = configurations.get_models(
  57. model_type=ModelType.TEXT_EMBEDDING,
  58. only_active=True
  59. )
  60. model_names = []
  61. for embedding_model in embedding_models:
  62. model_names.append(f"{embedding_model.model}:{embedding_model.provider.provider}")
  63. data = marshal(datasets, dataset_detail_fields)
  64. for item in data:
  65. if item['indexing_technique'] == 'high_quality':
  66. item_model = f"{item['embedding_model']}:{item['embedding_model_provider']}"
  67. if item_model in model_names:
  68. item['embedding_available'] = True
  69. else:
  70. item['embedding_available'] = False
  71. else:
  72. item['embedding_available'] = True
  73. response = {
  74. 'data': data,
  75. 'has_more': len(datasets) == limit,
  76. 'limit': limit,
  77. 'total': total,
  78. 'page': page
  79. }
  80. return response, 200
  81. @setup_required
  82. @login_required
  83. @account_initialization_required
  84. def post(self):
  85. parser = reqparse.RequestParser()
  86. parser.add_argument('name', nullable=False, required=True,
  87. help='type is required. Name must be between 1 to 40 characters.',
  88. type=_validate_name)
  89. parser.add_argument('indexing_technique', type=str, location='json',
  90. choices=Dataset.INDEXING_TECHNIQUE_LIST,
  91. nullable=True,
  92. help='Invalid indexing technique.')
  93. args = parser.parse_args()
  94. # The role of the current user in the ta table must be admin, owner, or editor
  95. if not current_user.is_editor:
  96. raise Forbidden()
  97. try:
  98. dataset = DatasetService.create_empty_dataset(
  99. tenant_id=current_user.current_tenant_id,
  100. name=args['name'],
  101. indexing_technique=args['indexing_technique'],
  102. account=current_user
  103. )
  104. except services.errors.dataset.DatasetNameDuplicateError:
  105. raise DatasetNameDuplicateError()
  106. return marshal(dataset, dataset_detail_fields), 201
  107. class DatasetApi(Resource):
  108. @setup_required
  109. @login_required
  110. @account_initialization_required
  111. def get(self, dataset_id):
  112. dataset_id_str = str(dataset_id)
  113. dataset = DatasetService.get_dataset(dataset_id_str)
  114. if dataset is None:
  115. raise NotFound("Dataset not found.")
  116. try:
  117. DatasetService.check_dataset_permission(
  118. dataset, current_user)
  119. except services.errors.account.NoPermissionError as e:
  120. raise Forbidden(str(e))
  121. data = marshal(dataset, dataset_detail_fields)
  122. # check embedding setting
  123. provider_manager = ProviderManager()
  124. configurations = provider_manager.get_configurations(
  125. tenant_id=current_user.current_tenant_id
  126. )
  127. embedding_models = configurations.get_models(
  128. model_type=ModelType.TEXT_EMBEDDING,
  129. only_active=True
  130. )
  131. model_names = []
  132. for embedding_model in embedding_models:
  133. model_names.append(f"{embedding_model.model}:{embedding_model.provider.provider}")
  134. if data['indexing_technique'] == 'high_quality':
  135. item_model = f"{data['embedding_model']}:{data['embedding_model_provider']}"
  136. if item_model in model_names:
  137. data['embedding_available'] = True
  138. else:
  139. data['embedding_available'] = False
  140. else:
  141. data['embedding_available'] = True
  142. return data, 200
  143. @setup_required
  144. @login_required
  145. @account_initialization_required
  146. def patch(self, dataset_id):
  147. dataset_id_str = str(dataset_id)
  148. dataset = DatasetService.get_dataset(dataset_id_str)
  149. if dataset is None:
  150. raise NotFound("Dataset not found.")
  151. # check user's model setting
  152. DatasetService.check_dataset_model_setting(dataset)
  153. parser = reqparse.RequestParser()
  154. parser.add_argument('name', nullable=False,
  155. help='type is required. Name must be between 1 to 40 characters.',
  156. type=_validate_name)
  157. parser.add_argument('description',
  158. location='json', store_missing=False,
  159. type=_validate_description_length)
  160. parser.add_argument('indexing_technique', type=str, location='json',
  161. choices=Dataset.INDEXING_TECHNIQUE_LIST,
  162. nullable=True,
  163. help='Invalid indexing technique.')
  164. parser.add_argument('permission', type=str, location='json', choices=(
  165. 'only_me', 'all_team_members'), help='Invalid permission.')
  166. parser.add_argument('embedding_model', type=str,
  167. location='json', help='Invalid embedding model.')
  168. parser.add_argument('embedding_model_provider', type=str,
  169. location='json', help='Invalid embedding model provider.')
  170. parser.add_argument('retrieval_model', type=dict, location='json', help='Invalid retrieval model.')
  171. args = parser.parse_args()
  172. # The role of the current user in the ta table must be admin, owner, or editor
  173. if not current_user.is_editor:
  174. raise Forbidden()
  175. dataset = DatasetService.update_dataset(
  176. dataset_id_str, args, current_user)
  177. if dataset is None:
  178. raise NotFound("Dataset not found.")
  179. return marshal(dataset, dataset_detail_fields), 200
  180. @setup_required
  181. @login_required
  182. @account_initialization_required
  183. def delete(self, dataset_id):
  184. dataset_id_str = str(dataset_id)
  185. # The role of the current user in the ta table must be admin, owner, or editor
  186. if not current_user.is_editor:
  187. raise Forbidden()
  188. try:
  189. if DatasetService.delete_dataset(dataset_id_str, current_user):
  190. return {'result': 'success'}, 204
  191. else:
  192. raise NotFound("Dataset not found.")
  193. except services.errors.dataset.DatasetInUseError:
  194. raise DatasetInUseError()
  195. class DatasetQueryApi(Resource):
  196. @setup_required
  197. @login_required
  198. @account_initialization_required
  199. def get(self, dataset_id):
  200. dataset_id_str = str(dataset_id)
  201. dataset = DatasetService.get_dataset(dataset_id_str)
  202. if dataset is None:
  203. raise NotFound("Dataset not found.")
  204. try:
  205. DatasetService.check_dataset_permission(dataset, current_user)
  206. except services.errors.account.NoPermissionError as e:
  207. raise Forbidden(str(e))
  208. page = request.args.get('page', default=1, type=int)
  209. limit = request.args.get('limit', default=20, type=int)
  210. dataset_queries, total = DatasetService.get_dataset_queries(
  211. dataset_id=dataset.id,
  212. page=page,
  213. per_page=limit
  214. )
  215. response = {
  216. 'data': marshal(dataset_queries, dataset_query_detail_fields),
  217. 'has_more': len(dataset_queries) == limit,
  218. 'limit': limit,
  219. 'total': total,
  220. 'page': page
  221. }
  222. return response, 200
  223. class DatasetIndexingEstimateApi(Resource):
  224. @setup_required
  225. @login_required
  226. @account_initialization_required
  227. def post(self):
  228. parser = reqparse.RequestParser()
  229. parser.add_argument('info_list', type=dict, required=True, nullable=True, location='json')
  230. parser.add_argument('process_rule', type=dict, required=True, nullable=True, location='json')
  231. parser.add_argument('indexing_technique', type=str, required=True,
  232. choices=Dataset.INDEXING_TECHNIQUE_LIST,
  233. nullable=True, location='json')
  234. parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
  235. parser.add_argument('dataset_id', type=str, required=False, nullable=False, location='json')
  236. parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False,
  237. location='json')
  238. args = parser.parse_args()
  239. # validate args
  240. DocumentService.estimate_args_validate(args)
  241. extract_settings = []
  242. if args['info_list']['data_source_type'] == 'upload_file':
  243. file_ids = args['info_list']['file_info_list']['file_ids']
  244. file_details = db.session.query(UploadFile).filter(
  245. UploadFile.tenant_id == current_user.current_tenant_id,
  246. UploadFile.id.in_(file_ids)
  247. ).all()
  248. if file_details is None:
  249. raise NotFound("File not found.")
  250. if file_details:
  251. for file_detail in file_details:
  252. extract_setting = ExtractSetting(
  253. datasource_type="upload_file",
  254. upload_file=file_detail,
  255. document_model=args['doc_form']
  256. )
  257. extract_settings.append(extract_setting)
  258. elif args['info_list']['data_source_type'] == 'notion_import':
  259. notion_info_list = args['info_list']['notion_info_list']
  260. for notion_info in notion_info_list:
  261. workspace_id = notion_info['workspace_id']
  262. for page in notion_info['pages']:
  263. extract_setting = ExtractSetting(
  264. datasource_type="notion_import",
  265. notion_info={
  266. "notion_workspace_id": workspace_id,
  267. "notion_obj_id": page['page_id'],
  268. "notion_page_type": page['type'],
  269. "tenant_id": current_user.current_tenant_id
  270. },
  271. document_model=args['doc_form']
  272. )
  273. extract_settings.append(extract_setting)
  274. elif args['info_list']['data_source_type'] == 'website_crawl':
  275. website_info_list = args['info_list']['website_info_list']
  276. for url in website_info_list['urls']:
  277. extract_setting = ExtractSetting(
  278. datasource_type="website_crawl",
  279. website_info={
  280. "provider": website_info_list['provider'],
  281. "job_id": website_info_list['job_id'],
  282. "url": url,
  283. "tenant_id": current_user.current_tenant_id,
  284. "mode": 'crawl',
  285. "only_main_content": website_info_list['only_main_content']
  286. },
  287. document_model=args['doc_form']
  288. )
  289. extract_settings.append(extract_setting)
  290. else:
  291. raise ValueError('Data source type not support')
  292. indexing_runner = IndexingRunner()
  293. try:
  294. response = indexing_runner.indexing_estimate(current_user.current_tenant_id, extract_settings,
  295. args['process_rule'], args['doc_form'],
  296. args['doc_language'], args['dataset_id'],
  297. args['indexing_technique'])
  298. except LLMBadRequestError:
  299. raise ProviderNotInitializeError(
  300. "No Embedding Model available. Please configure a valid provider "
  301. "in the Settings -> Model Provider.")
  302. except ProviderTokenNotInitError as ex:
  303. raise ProviderNotInitializeError(ex.description)
  304. return response, 200
  305. class DatasetRelatedAppListApi(Resource):
  306. @setup_required
  307. @login_required
  308. @account_initialization_required
  309. @marshal_with(related_app_list)
  310. def get(self, dataset_id):
  311. dataset_id_str = str(dataset_id)
  312. dataset = DatasetService.get_dataset(dataset_id_str)
  313. if dataset is None:
  314. raise NotFound("Dataset not found.")
  315. try:
  316. DatasetService.check_dataset_permission(dataset, current_user)
  317. except services.errors.account.NoPermissionError as e:
  318. raise Forbidden(str(e))
  319. app_dataset_joins = DatasetService.get_related_apps(dataset.id)
  320. related_apps = []
  321. for app_dataset_join in app_dataset_joins:
  322. app_model = app_dataset_join.app
  323. if app_model:
  324. related_apps.append(app_model)
  325. return {
  326. 'data': related_apps,
  327. 'total': len(related_apps)
  328. }, 200
  329. class DatasetIndexingStatusApi(Resource):
  330. @setup_required
  331. @login_required
  332. @account_initialization_required
  333. def get(self, dataset_id):
  334. dataset_id = str(dataset_id)
  335. documents = db.session.query(Document).filter(
  336. Document.dataset_id == dataset_id,
  337. Document.tenant_id == current_user.current_tenant_id
  338. ).all()
  339. documents_status = []
  340. for document in documents:
  341. completed_segments = DocumentSegment.query.filter(DocumentSegment.completed_at.isnot(None),
  342. DocumentSegment.document_id == str(document.id),
  343. DocumentSegment.status != 're_segment').count()
  344. total_segments = DocumentSegment.query.filter(DocumentSegment.document_id == str(document.id),
  345. DocumentSegment.status != 're_segment').count()
  346. document.completed_segments = completed_segments
  347. document.total_segments = total_segments
  348. documents_status.append(marshal(document, document_status_fields))
  349. data = {
  350. 'data': documents_status
  351. }
  352. return data
  353. class DatasetApiKeyApi(Resource):
  354. max_keys = 10
  355. token_prefix = 'dataset-'
  356. resource_type = 'dataset'
  357. @setup_required
  358. @login_required
  359. @account_initialization_required
  360. @marshal_with(api_key_list)
  361. def get(self):
  362. keys = db.session.query(ApiToken). \
  363. filter(ApiToken.type == self.resource_type, ApiToken.tenant_id == current_user.current_tenant_id). \
  364. all()
  365. return {"items": keys}
  366. @setup_required
  367. @login_required
  368. @account_initialization_required
  369. @marshal_with(api_key_fields)
  370. def post(self):
  371. # The role of the current user in the ta table must be admin or owner
  372. if not current_user.is_admin_or_owner:
  373. raise Forbidden()
  374. current_key_count = db.session.query(ApiToken). \
  375. filter(ApiToken.type == self.resource_type, ApiToken.tenant_id == current_user.current_tenant_id). \
  376. count()
  377. if current_key_count >= self.max_keys:
  378. flask_restful.abort(
  379. 400,
  380. message=f"Cannot create more than {self.max_keys} API keys for this resource type.",
  381. code='max_keys_exceeded'
  382. )
  383. key = ApiToken.generate_api_key(self.token_prefix, 24)
  384. api_token = ApiToken()
  385. api_token.tenant_id = current_user.current_tenant_id
  386. api_token.token = key
  387. api_token.type = self.resource_type
  388. db.session.add(api_token)
  389. db.session.commit()
  390. return api_token, 200
  391. class DatasetApiDeleteApi(Resource):
  392. resource_type = 'dataset'
  393. @setup_required
  394. @login_required
  395. @account_initialization_required
  396. def delete(self, api_key_id):
  397. api_key_id = str(api_key_id)
  398. # The role of the current user in the ta table must be admin or owner
  399. if not current_user.is_admin_or_owner:
  400. raise Forbidden()
  401. key = db.session.query(ApiToken). \
  402. filter(ApiToken.tenant_id == current_user.current_tenant_id, ApiToken.type == self.resource_type,
  403. ApiToken.id == api_key_id). \
  404. first()
  405. if key is None:
  406. flask_restful.abort(404, message='API key not found')
  407. db.session.query(ApiToken).filter(ApiToken.id == api_key_id).delete()
  408. db.session.commit()
  409. return {'result': 'success'}, 204
  410. class DatasetApiBaseUrlApi(Resource):
  411. @setup_required
  412. @login_required
  413. @account_initialization_required
  414. def get(self):
  415. return {
  416. 'api_base_url': (current_app.config['SERVICE_API_URL'] if current_app.config['SERVICE_API_URL']
  417. else request.host_url.rstrip('/')) + '/v1'
  418. }
  419. class DatasetRetrievalSettingApi(Resource):
  420. @setup_required
  421. @login_required
  422. @account_initialization_required
  423. def get(self):
  424. vector_type = current_app.config['VECTOR_STORE']
  425. match vector_type:
  426. case VectorType.MILVUS | VectorType.RELYT | VectorType.PGVECTOR | VectorType.TIDB_VECTOR | VectorType.CHROMA | VectorType.TENCENT:
  427. return {
  428. 'retrieval_method': [
  429. 'semantic_search'
  430. ]
  431. }
  432. case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH:
  433. return {
  434. 'retrieval_method': [
  435. 'semantic_search', 'full_text_search', 'hybrid_search'
  436. ]
  437. }
  438. case _:
  439. raise ValueError(f"Unsupported vector db type {vector_type}.")
  440. class DatasetRetrievalSettingMockApi(Resource):
  441. @setup_required
  442. @login_required
  443. @account_initialization_required
  444. def get(self, vector_type):
  445. match vector_type:
  446. case VectorType.MILVUS | VectorType.RELYT | VectorType.PGVECTOR | VectorType.TIDB_VECTOR | VectorType.CHROMA | VectorType.TENCEN:
  447. return {
  448. 'retrieval_method': [
  449. 'semantic_search'
  450. ]
  451. }
  452. case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH:
  453. return {
  454. 'retrieval_method': [
  455. 'semantic_search', 'full_text_search', 'hybrid_search'
  456. ]
  457. }
  458. case _:
  459. raise ValueError(f"Unsupported vector db type {vector_type}.")
  460. class DatasetErrorDocs(Resource):
  461. @setup_required
  462. @login_required
  463. @account_initialization_required
  464. def get(self, dataset_id):
  465. dataset_id_str = str(dataset_id)
  466. dataset = DatasetService.get_dataset(dataset_id_str)
  467. if dataset is None:
  468. raise NotFound("Dataset not found.")
  469. results = DocumentService.get_error_documents_by_dataset_id(dataset_id_str)
  470. return {
  471. 'data': [marshal(item, document_status_fields) for item in results],
  472. 'total': len(results)
  473. }, 200
  474. api.add_resource(DatasetListApi, '/datasets')
  475. api.add_resource(DatasetApi, '/datasets/<uuid:dataset_id>')
  476. api.add_resource(DatasetQueryApi, '/datasets/<uuid:dataset_id>/queries')
  477. api.add_resource(DatasetErrorDocs, '/datasets/<uuid:dataset_id>/error-docs')
  478. api.add_resource(DatasetIndexingEstimateApi, '/datasets/indexing-estimate')
  479. api.add_resource(DatasetRelatedAppListApi, '/datasets/<uuid:dataset_id>/related-apps')
  480. api.add_resource(DatasetIndexingStatusApi, '/datasets/<uuid:dataset_id>/indexing-status')
  481. api.add_resource(DatasetApiKeyApi, '/datasets/api-keys')
  482. api.add_resource(DatasetApiDeleteApi, '/datasets/api-keys/<uuid:api_key_id>')
  483. api.add_resource(DatasetApiBaseUrlApi, '/datasets/api-base-info')
  484. api.add_resource(DatasetRetrievalSettingApi, '/datasets/retrieval-setting')
  485. api.add_resource(DatasetRetrievalSettingMockApi, '/datasets/retrieval-setting/<string:vector_type>')