assistant_base_runner.py 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584
  1. import json
  2. import logging
  3. import uuid
  4. from datetime import datetime
  5. from mimetypes import guess_extension
  6. from typing import Optional, Union, cast
  7. from core.app_runner.app_runner import AppRunner
  8. from core.application_queue_manager import ApplicationQueueManager
  9. from core.callback_handler.agent_tool_callback_handler import DifyAgentCallbackHandler
  10. from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
  11. from core.entities.application_entities import (
  12. AgentEntity,
  13. AgentToolEntity,
  14. ApplicationGenerateEntity,
  15. AppOrchestrationConfigEntity,
  16. InvokeFrom,
  17. ModelConfigEntity,
  18. )
  19. from core.file.message_file_parser import FileTransferMethod
  20. from core.memory.token_buffer_memory import TokenBufferMemory
  21. from core.model_manager import ModelInstance
  22. from core.model_runtime.entities.llm_entities import LLMUsage
  23. from core.model_runtime.entities.message_entities import (
  24. AssistantPromptMessage,
  25. PromptMessage,
  26. PromptMessageTool,
  27. SystemPromptMessage,
  28. ToolPromptMessage,
  29. UserPromptMessage,
  30. )
  31. from core.model_runtime.entities.model_entities import ModelFeature
  32. from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
  33. from core.model_runtime.utils.encoders import jsonable_encoder
  34. from core.tools.entities.tool_entities import (
  35. ToolInvokeMessage,
  36. ToolInvokeMessageBinary,
  37. ToolParameter,
  38. ToolRuntimeVariablePool,
  39. )
  40. from core.tools.tool.dataset_retriever_tool import DatasetRetrieverTool
  41. from core.tools.tool.tool import Tool
  42. from core.tools.tool_file_manager import ToolFileManager
  43. from core.tools.tool_manager import ToolManager
  44. from extensions.ext_database import db
  45. from models.model import Message, MessageAgentThought, MessageFile
  46. from models.tools import ToolConversationVariables
  47. logger = logging.getLogger(__name__)
  48. class BaseAssistantApplicationRunner(AppRunner):
  49. def __init__(self, tenant_id: str,
  50. application_generate_entity: ApplicationGenerateEntity,
  51. app_orchestration_config: AppOrchestrationConfigEntity,
  52. model_config: ModelConfigEntity,
  53. config: AgentEntity,
  54. queue_manager: ApplicationQueueManager,
  55. message: Message,
  56. user_id: str,
  57. memory: Optional[TokenBufferMemory] = None,
  58. prompt_messages: Optional[list[PromptMessage]] = None,
  59. variables_pool: Optional[ToolRuntimeVariablePool] = None,
  60. db_variables: Optional[ToolConversationVariables] = None,
  61. model_instance: ModelInstance = None
  62. ) -> None:
  63. """
  64. Agent runner
  65. :param tenant_id: tenant id
  66. :param app_orchestration_config: app orchestration config
  67. :param model_config: model config
  68. :param config: dataset config
  69. :param queue_manager: queue manager
  70. :param message: message
  71. :param user_id: user id
  72. :param agent_llm_callback: agent llm callback
  73. :param callback: callback
  74. :param memory: memory
  75. """
  76. self.tenant_id = tenant_id
  77. self.application_generate_entity = application_generate_entity
  78. self.app_orchestration_config = app_orchestration_config
  79. self.model_config = model_config
  80. self.config = config
  81. self.queue_manager = queue_manager
  82. self.message = message
  83. self.user_id = user_id
  84. self.memory = memory
  85. self.history_prompt_messages = self.organize_agent_history(
  86. prompt_messages=prompt_messages or []
  87. )
  88. self.variables_pool = variables_pool
  89. self.db_variables_pool = db_variables
  90. self.model_instance = model_instance
  91. # init callback
  92. self.agent_callback = DifyAgentCallbackHandler()
  93. # init dataset tools
  94. hit_callback = DatasetIndexToolCallbackHandler(
  95. queue_manager=queue_manager,
  96. app_id=self.application_generate_entity.app_id,
  97. message_id=message.id,
  98. user_id=user_id,
  99. invoke_from=self.application_generate_entity.invoke_from,
  100. )
  101. self.dataset_tools = DatasetRetrieverTool.get_dataset_tools(
  102. tenant_id=tenant_id,
  103. dataset_ids=app_orchestration_config.dataset.dataset_ids if app_orchestration_config.dataset else [],
  104. retrieve_config=app_orchestration_config.dataset.retrieve_config if app_orchestration_config.dataset else None,
  105. return_resource=app_orchestration_config.show_retrieve_source,
  106. invoke_from=application_generate_entity.invoke_from,
  107. hit_callback=hit_callback
  108. )
  109. # get how many agent thoughts have been created
  110. self.agent_thought_count = db.session.query(MessageAgentThought).filter(
  111. MessageAgentThought.message_id == self.message.id,
  112. ).count()
  113. # check if model supports stream tool call
  114. llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
  115. model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
  116. if model_schema and ModelFeature.STREAM_TOOL_CALL in (model_schema.features or []):
  117. self.stream_tool_call = True
  118. else:
  119. self.stream_tool_call = False
  120. def _repack_app_orchestration_config(self, app_orchestration_config: AppOrchestrationConfigEntity) -> AppOrchestrationConfigEntity:
  121. """
  122. Repack app orchestration config
  123. """
  124. if app_orchestration_config.prompt_template.simple_prompt_template is None:
  125. app_orchestration_config.prompt_template.simple_prompt_template = ''
  126. return app_orchestration_config
  127. def _convert_tool_response_to_str(self, tool_response: list[ToolInvokeMessage]) -> str:
  128. """
  129. Handle tool response
  130. """
  131. result = ''
  132. for response in tool_response:
  133. if response.type == ToolInvokeMessage.MessageType.TEXT:
  134. result += response.message
  135. elif response.type == ToolInvokeMessage.MessageType.LINK:
  136. result += f"result link: {response.message}. please tell user to check it."
  137. elif response.type == ToolInvokeMessage.MessageType.IMAGE_LINK or \
  138. response.type == ToolInvokeMessage.MessageType.IMAGE:
  139. result += "image has been created and sent to user already, you should tell user to check it now."
  140. else:
  141. result += f"tool response: {response.message}."
  142. return result
  143. def _convert_tool_to_prompt_message_tool(self, tool: AgentToolEntity) -> tuple[PromptMessageTool, Tool]:
  144. """
  145. convert tool to prompt message tool
  146. """
  147. tool_entity = ToolManager.get_agent_tool_runtime(
  148. tenant_id=self.tenant_id,
  149. agent_tool=tool,
  150. agent_callback=self.agent_callback
  151. )
  152. tool_entity.load_variables(self.variables_pool)
  153. message_tool = PromptMessageTool(
  154. name=tool.tool_name,
  155. description=tool_entity.description.llm,
  156. parameters={
  157. "type": "object",
  158. "properties": {},
  159. "required": [],
  160. }
  161. )
  162. parameters = tool_entity.get_all_runtime_parameters()
  163. for parameter in parameters:
  164. if parameter.form != ToolParameter.ToolParameterForm.LLM:
  165. continue
  166. parameter_type = 'string'
  167. enum = []
  168. if parameter.type == ToolParameter.ToolParameterType.STRING:
  169. parameter_type = 'string'
  170. elif parameter.type == ToolParameter.ToolParameterType.BOOLEAN:
  171. parameter_type = 'boolean'
  172. elif parameter.type == ToolParameter.ToolParameterType.NUMBER:
  173. parameter_type = 'number'
  174. elif parameter.type == ToolParameter.ToolParameterType.SELECT:
  175. for option in parameter.options:
  176. enum.append(option.value)
  177. parameter_type = 'string'
  178. else:
  179. raise ValueError(f"parameter type {parameter.type} is not supported")
  180. message_tool.parameters['properties'][parameter.name] = {
  181. "type": parameter_type,
  182. "description": parameter.llm_description or '',
  183. }
  184. if len(enum) > 0:
  185. message_tool.parameters['properties'][parameter.name]['enum'] = enum
  186. if parameter.required:
  187. message_tool.parameters['required'].append(parameter.name)
  188. return message_tool, tool_entity
  189. def _convert_dataset_retriever_tool_to_prompt_message_tool(self, tool: DatasetRetrieverTool) -> PromptMessageTool:
  190. """
  191. convert dataset retriever tool to prompt message tool
  192. """
  193. prompt_tool = PromptMessageTool(
  194. name=tool.identity.name,
  195. description=tool.description.llm,
  196. parameters={
  197. "type": "object",
  198. "properties": {},
  199. "required": [],
  200. }
  201. )
  202. for parameter in tool.get_runtime_parameters():
  203. parameter_type = 'string'
  204. prompt_tool.parameters['properties'][parameter.name] = {
  205. "type": parameter_type,
  206. "description": parameter.llm_description or '',
  207. }
  208. if parameter.required:
  209. if parameter.name not in prompt_tool.parameters['required']:
  210. prompt_tool.parameters['required'].append(parameter.name)
  211. return prompt_tool
  212. def update_prompt_message_tool(self, tool: Tool, prompt_tool: PromptMessageTool) -> PromptMessageTool:
  213. """
  214. update prompt message tool
  215. """
  216. # try to get tool runtime parameters
  217. tool_runtime_parameters = tool.get_runtime_parameters() or []
  218. for parameter in tool_runtime_parameters:
  219. if parameter.form != ToolParameter.ToolParameterForm.LLM:
  220. continue
  221. parameter_type = 'string'
  222. enum = []
  223. if parameter.type == ToolParameter.ToolParameterType.STRING:
  224. parameter_type = 'string'
  225. elif parameter.type == ToolParameter.ToolParameterType.BOOLEAN:
  226. parameter_type = 'boolean'
  227. elif parameter.type == ToolParameter.ToolParameterType.NUMBER:
  228. parameter_type = 'number'
  229. elif parameter.type == ToolParameter.ToolParameterType.SELECT:
  230. for option in parameter.options:
  231. enum.append(option.value)
  232. parameter_type = 'string'
  233. else:
  234. raise ValueError(f"parameter type {parameter.type} is not supported")
  235. prompt_tool.parameters['properties'][parameter.name] = {
  236. "type": parameter_type,
  237. "description": parameter.llm_description or '',
  238. }
  239. if len(enum) > 0:
  240. prompt_tool.parameters['properties'][parameter.name]['enum'] = enum
  241. if parameter.required:
  242. if parameter.name not in prompt_tool.parameters['required']:
  243. prompt_tool.parameters['required'].append(parameter.name)
  244. return prompt_tool
  245. def extract_tool_response_binary(self, tool_response: list[ToolInvokeMessage]) -> list[ToolInvokeMessageBinary]:
  246. """
  247. Extract tool response binary
  248. """
  249. result = []
  250. for response in tool_response:
  251. if response.type == ToolInvokeMessage.MessageType.IMAGE_LINK or \
  252. response.type == ToolInvokeMessage.MessageType.IMAGE:
  253. result.append(ToolInvokeMessageBinary(
  254. mimetype=response.meta.get('mime_type', 'octet/stream'),
  255. url=response.message,
  256. save_as=response.save_as,
  257. ))
  258. elif response.type == ToolInvokeMessage.MessageType.BLOB:
  259. result.append(ToolInvokeMessageBinary(
  260. mimetype=response.meta.get('mime_type', 'octet/stream'),
  261. url=response.message,
  262. save_as=response.save_as,
  263. ))
  264. elif response.type == ToolInvokeMessage.MessageType.LINK:
  265. # check if there is a mime type in meta
  266. if response.meta and 'mime_type' in response.meta:
  267. result.append(ToolInvokeMessageBinary(
  268. mimetype=response.meta.get('mime_type', 'octet/stream') if response.meta else 'octet/stream',
  269. url=response.message,
  270. save_as=response.save_as,
  271. ))
  272. return result
  273. def create_message_files(self, messages: list[ToolInvokeMessageBinary]) -> list[tuple[MessageFile, bool]]:
  274. """
  275. Create message file
  276. :param messages: messages
  277. :return: message files, should save as variable
  278. """
  279. result = []
  280. for message in messages:
  281. file_type = 'bin'
  282. if 'image' in message.mimetype:
  283. file_type = 'image'
  284. elif 'video' in message.mimetype:
  285. file_type = 'video'
  286. elif 'audio' in message.mimetype:
  287. file_type = 'audio'
  288. elif 'text' in message.mimetype:
  289. file_type = 'text'
  290. elif 'pdf' in message.mimetype:
  291. file_type = 'pdf'
  292. elif 'zip' in message.mimetype:
  293. file_type = 'archive'
  294. # ...
  295. invoke_from = self.application_generate_entity.invoke_from
  296. message_file = MessageFile(
  297. message_id=self.message.id,
  298. type=file_type,
  299. transfer_method=FileTransferMethod.TOOL_FILE.value,
  300. belongs_to='assistant',
  301. url=message.url,
  302. upload_file_id=None,
  303. created_by_role=('account'if invoke_from in [InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER] else 'end_user'),
  304. created_by=self.user_id,
  305. )
  306. db.session.add(message_file)
  307. result.append((
  308. message_file,
  309. message.save_as
  310. ))
  311. db.session.commit()
  312. return result
  313. def create_agent_thought(self, message_id: str, message: str,
  314. tool_name: str, tool_input: str, messages_ids: list[str]
  315. ) -> MessageAgentThought:
  316. """
  317. Create agent thought
  318. """
  319. thought = MessageAgentThought(
  320. message_id=message_id,
  321. message_chain_id=None,
  322. thought='',
  323. tool=tool_name,
  324. tool_labels_str='{}',
  325. tool_input=tool_input,
  326. message=message,
  327. message_token=0,
  328. message_unit_price=0,
  329. message_price_unit=0,
  330. message_files=json.dumps(messages_ids) if messages_ids else '',
  331. answer='',
  332. observation='',
  333. answer_token=0,
  334. answer_unit_price=0,
  335. answer_price_unit=0,
  336. tokens=0,
  337. total_price=0,
  338. position=self.agent_thought_count + 1,
  339. currency='USD',
  340. latency=0,
  341. created_by_role='account',
  342. created_by=self.user_id,
  343. )
  344. db.session.add(thought)
  345. db.session.commit()
  346. self.agent_thought_count += 1
  347. return thought
  348. def save_agent_thought(self,
  349. agent_thought: MessageAgentThought,
  350. tool_name: str,
  351. tool_input: Union[str, dict],
  352. thought: str,
  353. observation: str,
  354. answer: str,
  355. messages_ids: list[str],
  356. llm_usage: LLMUsage = None) -> MessageAgentThought:
  357. """
  358. Save agent thought
  359. """
  360. if thought is not None:
  361. agent_thought.thought = thought
  362. if tool_name is not None:
  363. agent_thought.tool = tool_name
  364. if tool_input is not None:
  365. if isinstance(tool_input, dict):
  366. try:
  367. tool_input = json.dumps(tool_input, ensure_ascii=False)
  368. except Exception as e:
  369. tool_input = json.dumps(tool_input)
  370. agent_thought.tool_input = tool_input
  371. if observation is not None:
  372. agent_thought.observation = observation
  373. if answer is not None:
  374. agent_thought.answer = answer
  375. if messages_ids is not None and len(messages_ids) > 0:
  376. agent_thought.message_files = json.dumps(messages_ids)
  377. if llm_usage:
  378. agent_thought.message_token = llm_usage.prompt_tokens
  379. agent_thought.message_price_unit = llm_usage.prompt_price_unit
  380. agent_thought.message_unit_price = llm_usage.prompt_unit_price
  381. agent_thought.answer_token = llm_usage.completion_tokens
  382. agent_thought.answer_price_unit = llm_usage.completion_price_unit
  383. agent_thought.answer_unit_price = llm_usage.completion_unit_price
  384. agent_thought.tokens = llm_usage.total_tokens
  385. agent_thought.total_price = llm_usage.total_price
  386. # check if tool labels is not empty
  387. labels = agent_thought.tool_labels or {}
  388. tools = agent_thought.tool.split(';') if agent_thought.tool else []
  389. for tool in tools:
  390. if not tool:
  391. continue
  392. if tool not in labels:
  393. tool_label = ToolManager.get_tool_label(tool)
  394. if tool_label:
  395. labels[tool] = tool_label.to_dict()
  396. else:
  397. labels[tool] = {'en_US': tool, 'zh_Hans': tool}
  398. agent_thought.tool_labels_str = json.dumps(labels)
  399. db.session.commit()
  400. def transform_tool_invoke_messages(self, messages: list[ToolInvokeMessage]) -> list[ToolInvokeMessage]:
  401. """
  402. Transform tool message into agent thought
  403. """
  404. result = []
  405. for message in messages:
  406. if message.type == ToolInvokeMessage.MessageType.TEXT:
  407. result.append(message)
  408. elif message.type == ToolInvokeMessage.MessageType.LINK:
  409. result.append(message)
  410. elif message.type == ToolInvokeMessage.MessageType.IMAGE:
  411. # try to download image
  412. try:
  413. file = ToolFileManager.create_file_by_url(user_id=self.user_id, tenant_id=self.tenant_id,
  414. conversation_id=self.message.conversation_id,
  415. file_url=message.message)
  416. url = f'/files/tools/{file.id}{guess_extension(file.mimetype) or ".png"}'
  417. result.append(ToolInvokeMessage(
  418. type=ToolInvokeMessage.MessageType.IMAGE_LINK,
  419. message=url,
  420. save_as=message.save_as,
  421. meta=message.meta.copy() if message.meta is not None else {},
  422. ))
  423. except Exception as e:
  424. logger.exception(e)
  425. result.append(ToolInvokeMessage(
  426. type=ToolInvokeMessage.MessageType.TEXT,
  427. message=f"Failed to download image: {message.message}, you can try to download it yourself.",
  428. meta=message.meta.copy() if message.meta is not None else {},
  429. save_as=message.save_as,
  430. ))
  431. elif message.type == ToolInvokeMessage.MessageType.BLOB:
  432. # get mime type and save blob to storage
  433. mimetype = message.meta.get('mime_type', 'octet/stream')
  434. # if message is str, encode it to bytes
  435. if isinstance(message.message, str):
  436. message.message = message.message.encode('utf-8')
  437. file = ToolFileManager.create_file_by_raw(user_id=self.user_id, tenant_id=self.tenant_id,
  438. conversation_id=self.message.conversation_id,
  439. file_binary=message.message,
  440. mimetype=mimetype)
  441. url = f'/files/tools/{file.id}{guess_extension(file.mimetype) or ".bin"}'
  442. # check if file is image
  443. if 'image' in mimetype:
  444. result.append(ToolInvokeMessage(
  445. type=ToolInvokeMessage.MessageType.IMAGE_LINK,
  446. message=url,
  447. save_as=message.save_as,
  448. meta=message.meta.copy() if message.meta is not None else {},
  449. ))
  450. else:
  451. result.append(ToolInvokeMessage(
  452. type=ToolInvokeMessage.MessageType.LINK,
  453. message=url,
  454. save_as=message.save_as,
  455. meta=message.meta.copy() if message.meta is not None else {},
  456. ))
  457. else:
  458. result.append(message)
  459. return result
  460. def update_db_variables(self, tool_variables: ToolRuntimeVariablePool, db_variables: ToolConversationVariables):
  461. """
  462. convert tool variables to db variables
  463. """
  464. db_variables.updated_at = datetime.utcnow()
  465. db_variables.variables_str = json.dumps(jsonable_encoder(tool_variables.pool))
  466. db.session.commit()
  467. def organize_agent_history(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
  468. """
  469. Organize agent history
  470. """
  471. result = []
  472. # check if there is a system message in the beginning of the conversation
  473. if prompt_messages and isinstance(prompt_messages[0], SystemPromptMessage):
  474. result.append(prompt_messages[0])
  475. messages: list[Message] = db.session.query(Message).filter(
  476. Message.conversation_id == self.message.conversation_id,
  477. ).order_by(Message.created_at.asc()).all()
  478. for message in messages:
  479. result.append(UserPromptMessage(content=message.query))
  480. agent_thoughts: list[MessageAgentThought] = message.agent_thoughts
  481. if agent_thoughts:
  482. for agent_thought in agent_thoughts:
  483. tools = agent_thought.tool
  484. if tools:
  485. tools = tools.split(';')
  486. tool_calls: list[AssistantPromptMessage.ToolCall] = []
  487. tool_call_response: list[ToolPromptMessage] = []
  488. tool_inputs = json.loads(agent_thought.tool_input)
  489. for tool in tools:
  490. # generate a uuid for tool call
  491. tool_call_id = str(uuid.uuid4())
  492. tool_calls.append(AssistantPromptMessage.ToolCall(
  493. id=tool_call_id,
  494. type='function',
  495. function=AssistantPromptMessage.ToolCall.ToolCallFunction(
  496. name=tool,
  497. arguments=json.dumps(tool_inputs.get(tool, {})),
  498. )
  499. ))
  500. tool_call_response.append(ToolPromptMessage(
  501. content=agent_thought.observation,
  502. name=tool,
  503. tool_call_id=tool_call_id,
  504. ))
  505. result.extend([
  506. AssistantPromptMessage(
  507. content=agent_thought.thought,
  508. tool_calls=tool_calls,
  509. ),
  510. *tool_call_response
  511. ])
  512. if not tools:
  513. result.append(AssistantPromptMessage(content=agent_thought.thought))
  514. else:
  515. if message.answer:
  516. result.append(AssistantPromptMessage(content=message.answer))
  517. return result