dataset_service.py 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824
  1. import json
  2. import logging
  3. import datetime
  4. import time
  5. import random
  6. from typing import Optional, List
  7. from extensions.ext_redis import redis_client
  8. from flask_login import current_user
  9. from core.index.index_builder import IndexBuilder
  10. from events.dataset_event import dataset_was_deleted
  11. from events.document_event import document_was_deleted
  12. from extensions.ext_database import db
  13. from models.account import Account
  14. from models.dataset import Dataset, Document, DatasetQuery, DatasetProcessRule, AppDatasetJoin, DocumentSegment
  15. from models.model import UploadFile
  16. from models.source import DataSourceBinding
  17. from services.errors.account import NoPermissionError
  18. from services.errors.dataset import DatasetNameDuplicateError
  19. from services.errors.document import DocumentIndexingError
  20. from services.errors.file import FileNotExistsError
  21. from tasks.clean_notion_document_task import clean_notion_document_task
  22. from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
  23. from tasks.document_indexing_task import document_indexing_task
  24. from tasks.document_indexing_update_task import document_indexing_update_task
  25. class DatasetService:
  26. @staticmethod
  27. def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None):
  28. if user:
  29. permission_filter = db.or_(Dataset.created_by == user.id,
  30. Dataset.permission == 'all_team_members')
  31. else:
  32. permission_filter = Dataset.permission == 'all_team_members'
  33. datasets = Dataset.query.filter(
  34. db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \
  35. .paginate(
  36. page=page,
  37. per_page=per_page,
  38. max_per_page=100,
  39. error_out=False
  40. )
  41. return datasets.items, datasets.total
  42. @staticmethod
  43. def get_process_rules(dataset_id):
  44. # get the latest process rule
  45. dataset_process_rule = db.session.query(DatasetProcessRule). \
  46. filter(DatasetProcessRule.dataset_id == dataset_id). \
  47. order_by(DatasetProcessRule.created_at.desc()). \
  48. limit(1). \
  49. one_or_none()
  50. if dataset_process_rule:
  51. mode = dataset_process_rule.mode
  52. rules = dataset_process_rule.rules_dict
  53. else:
  54. mode = DocumentService.DEFAULT_RULES['mode']
  55. rules = DocumentService.DEFAULT_RULES['rules']
  56. return {
  57. 'mode': mode,
  58. 'rules': rules
  59. }
  60. @staticmethod
  61. def get_datasets_by_ids(ids, tenant_id):
  62. datasets = Dataset.query.filter(Dataset.id.in_(ids),
  63. Dataset.tenant_id == tenant_id).paginate(
  64. page=1, per_page=len(ids), max_per_page=len(ids), error_out=False)
  65. return datasets.items, datasets.total
  66. @staticmethod
  67. def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
  68. # check if dataset name already exists
  69. if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
  70. raise DatasetNameDuplicateError(
  71. f'Dataset with name {name} already exists.')
  72. dataset = Dataset(name=name, indexing_technique=indexing_technique)
  73. # dataset = Dataset(name=name, provider=provider, config=config)
  74. dataset.created_by = account.id
  75. dataset.updated_by = account.id
  76. dataset.tenant_id = tenant_id
  77. db.session.add(dataset)
  78. db.session.commit()
  79. return dataset
  80. @staticmethod
  81. def get_dataset(dataset_id):
  82. dataset = Dataset.query.filter_by(
  83. id=dataset_id
  84. ).first()
  85. if dataset is None:
  86. return None
  87. else:
  88. return dataset
  89. @staticmethod
  90. def update_dataset(dataset_id, data, user):
  91. dataset = DatasetService.get_dataset(dataset_id)
  92. DatasetService.check_dataset_permission(dataset, user)
  93. if dataset.indexing_technique != data['indexing_technique']:
  94. # if update indexing_technique
  95. if data['indexing_technique'] == 'economy':
  96. deal_dataset_vector_index_task.delay(dataset_id, 'remove')
  97. elif data['indexing_technique'] == 'high_quality':
  98. deal_dataset_vector_index_task.delay(dataset_id, 'add')
  99. filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
  100. filtered_data['updated_by'] = user.id
  101. filtered_data['updated_at'] = datetime.datetime.now()
  102. dataset.query.filter_by(id=dataset_id).update(filtered_data)
  103. db.session.commit()
  104. return dataset
  105. @staticmethod
  106. def delete_dataset(dataset_id, user):
  107. # todo: cannot delete dataset if it is being processed
  108. dataset = DatasetService.get_dataset(dataset_id)
  109. if dataset is None:
  110. return False
  111. DatasetService.check_dataset_permission(dataset, user)
  112. dataset_was_deleted.send(dataset)
  113. db.session.delete(dataset)
  114. db.session.commit()
  115. return True
  116. @staticmethod
  117. def check_dataset_permission(dataset, user):
  118. if dataset.tenant_id != user.current_tenant_id:
  119. logging.debug(
  120. f'User {user.id} does not have permission to access dataset {dataset.id}')
  121. raise NoPermissionError(
  122. 'You do not have permission to access this dataset.')
  123. if dataset.permission == 'only_me' and dataset.created_by != user.id:
  124. logging.debug(
  125. f'User {user.id} does not have permission to access dataset {dataset.id}')
  126. raise NoPermissionError(
  127. 'You do not have permission to access this dataset.')
  128. @staticmethod
  129. def get_dataset_queries(dataset_id: str, page: int, per_page: int):
  130. dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \
  131. .order_by(db.desc(DatasetQuery.created_at)) \
  132. .paginate(
  133. page=page, per_page=per_page, max_per_page=100, error_out=False
  134. )
  135. return dataset_queries.items, dataset_queries.total
  136. @staticmethod
  137. def get_related_apps(dataset_id: str):
  138. return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \
  139. .order_by(db.desc(AppDatasetJoin.created_at)).all()
  140. class DocumentService:
  141. DEFAULT_RULES = {
  142. 'mode': 'custom',
  143. 'rules': {
  144. 'pre_processing_rules': [
  145. {'id': 'remove_extra_spaces', 'enabled': True},
  146. {'id': 'remove_urls_emails', 'enabled': False}
  147. ],
  148. 'segmentation': {
  149. 'delimiter': '\n',
  150. 'max_tokens': 500
  151. }
  152. }
  153. }
  154. DOCUMENT_METADATA_SCHEMA = {
  155. "book": {
  156. "title": str,
  157. "language": str,
  158. "author": str,
  159. "publisher": str,
  160. "publication_date": str,
  161. "isbn": str,
  162. "category": str,
  163. },
  164. "web_page": {
  165. "title": str,
  166. "url": str,
  167. "language": str,
  168. "publish_date": str,
  169. "author/publisher": str,
  170. "topic/keywords": str,
  171. "description": str,
  172. },
  173. "paper": {
  174. "title": str,
  175. "language": str,
  176. "author": str,
  177. "publish_date": str,
  178. "journal/conference_name": str,
  179. "volume/issue/page_numbers": str,
  180. "doi": str,
  181. "topic/keywords": str,
  182. "abstract": str,
  183. },
  184. "social_media_post": {
  185. "platform": str,
  186. "author/username": str,
  187. "publish_date": str,
  188. "post_url": str,
  189. "topic/tags": str,
  190. },
  191. "wikipedia_entry": {
  192. "title": str,
  193. "language": str,
  194. "web_page_url": str,
  195. "last_edit_date": str,
  196. "editor/contributor": str,
  197. "summary/introduction": str,
  198. },
  199. "personal_document": {
  200. "title": str,
  201. "author": str,
  202. "creation_date": str,
  203. "last_modified_date": str,
  204. "document_type": str,
  205. "tags/category": str,
  206. },
  207. "business_document": {
  208. "title": str,
  209. "author": str,
  210. "creation_date": str,
  211. "last_modified_date": str,
  212. "document_type": str,
  213. "department/team": str,
  214. },
  215. "im_chat_log": {
  216. "chat_platform": str,
  217. "chat_participants/group_name": str,
  218. "start_date": str,
  219. "end_date": str,
  220. "summary": str,
  221. },
  222. "synced_from_notion": {
  223. "title": str,
  224. "language": str,
  225. "author/creator": str,
  226. "creation_date": str,
  227. "last_modified_date": str,
  228. "notion_page_link": str,
  229. "category/tags": str,
  230. "description": str,
  231. },
  232. "synced_from_github": {
  233. "repository_name": str,
  234. "repository_description": str,
  235. "repository_owner/organization": str,
  236. "code_filename": str,
  237. "code_file_path": str,
  238. "programming_language": str,
  239. "github_link": str,
  240. "open_source_license": str,
  241. "commit_date": str,
  242. "commit_author": str
  243. }
  244. }
  245. @staticmethod
  246. def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
  247. document = db.session.query(Document).filter(
  248. Document.id == document_id,
  249. Document.dataset_id == dataset_id
  250. ).first()
  251. return document
  252. @staticmethod
  253. def get_document_by_id(document_id: str) -> Optional[Document]:
  254. document = db.session.query(Document).filter(
  255. Document.id == document_id
  256. ).first()
  257. return document
  258. @staticmethod
  259. def get_document_by_dataset_id(dataset_id: str) -> List[Document]:
  260. documents = db.session.query(Document).filter(
  261. Document.dataset_id == dataset_id,
  262. Document.enabled == True
  263. ).all()
  264. return documents
  265. @staticmethod
  266. def get_batch_documents(dataset_id: str, batch: str) -> List[Document]:
  267. documents = db.session.query(Document).filter(
  268. Document.batch == batch,
  269. Document.dataset_id == dataset_id,
  270. Document.tenant_id == current_user.current_tenant_id
  271. ).all()
  272. return documents
  273. @staticmethod
  274. def get_document_file_detail(file_id: str):
  275. file_detail = db.session.query(UploadFile). \
  276. filter(UploadFile.id == file_id). \
  277. one_or_none()
  278. return file_detail
  279. @staticmethod
  280. def check_archived(document):
  281. if document.archived:
  282. return True
  283. else:
  284. return False
  285. @staticmethod
  286. def delete_document(document):
  287. if document.indexing_status in ["parsing", "cleaning", "splitting", "indexing"]:
  288. raise DocumentIndexingError()
  289. # trigger document_was_deleted signal
  290. document_was_deleted.send(document.id, dataset_id=document.dataset_id)
  291. db.session.delete(document)
  292. db.session.commit()
  293. @staticmethod
  294. def pause_document(document):
  295. if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
  296. raise DocumentIndexingError()
  297. # update document to be paused
  298. document.is_paused = True
  299. document.paused_by = current_user.id
  300. document.paused_at = datetime.datetime.utcnow()
  301. db.session.add(document)
  302. db.session.commit()
  303. # set document paused flag
  304. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  305. redis_client.setnx(indexing_cache_key, "True")
  306. @staticmethod
  307. def recover_document(document):
  308. if not document.is_paused:
  309. raise DocumentIndexingError()
  310. # update document to be recover
  311. document.is_paused = False
  312. document.paused_by = current_user.id
  313. document.paused_at = time.time()
  314. db.session.add(document)
  315. db.session.commit()
  316. # delete paused flag
  317. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  318. redis_client.delete(indexing_cache_key)
  319. # trigger async task
  320. document_indexing_task.delay(document.dataset_id, document.id)
  321. @staticmethod
  322. def get_documents_position(dataset_id):
  323. document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
  324. if document:
  325. return document.position + 1
  326. else:
  327. return 1
  328. @staticmethod
  329. def save_document_with_dataset_id(dataset: Dataset, document_data: dict,
  330. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  331. created_from: str = 'web'):
  332. # if dataset is empty, update dataset data_source_type
  333. if not dataset.data_source_type:
  334. dataset.data_source_type = document_data["data_source"]["type"]
  335. db.session.commit()
  336. if not dataset.indexing_technique:
  337. if 'indexing_technique' not in document_data \
  338. or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:
  339. raise ValueError("Indexing technique is required")
  340. dataset.indexing_technique = document_data["indexing_technique"]
  341. if dataset.indexing_technique == 'high_quality':
  342. IndexBuilder.get_default_service_context(dataset.tenant_id)
  343. documents = []
  344. batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))
  345. if 'original_document_id' in document_data and document_data["original_document_id"]:
  346. document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
  347. documents.append(document)
  348. else:
  349. # save process rule
  350. if not dataset_process_rule:
  351. process_rule = document_data["process_rule"]
  352. if process_rule["mode"] == "custom":
  353. dataset_process_rule = DatasetProcessRule(
  354. dataset_id=dataset.id,
  355. mode=process_rule["mode"],
  356. rules=json.dumps(process_rule["rules"]),
  357. created_by=account.id
  358. )
  359. elif process_rule["mode"] == "automatic":
  360. dataset_process_rule = DatasetProcessRule(
  361. dataset_id=dataset.id,
  362. mode=process_rule["mode"],
  363. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  364. created_by=account.id
  365. )
  366. db.session.add(dataset_process_rule)
  367. db.session.commit()
  368. position = DocumentService.get_documents_position(dataset.id)
  369. document_ids = []
  370. if document_data["data_source"]["type"] == "upload_file":
  371. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  372. for file_id in upload_file_list:
  373. file = db.session.query(UploadFile).filter(
  374. UploadFile.tenant_id == dataset.tenant_id,
  375. UploadFile.id == file_id
  376. ).first()
  377. # raise error if file not found
  378. if not file:
  379. raise FileNotExistsError()
  380. file_name = file.name
  381. data_source_info = {
  382. "upload_file_id": file_id,
  383. }
  384. document = DocumentService.save_document(dataset, dataset_process_rule.id,
  385. document_data["data_source"]["type"],
  386. data_source_info, created_from, position,
  387. account, file_name, batch)
  388. db.session.add(document)
  389. db.session.flush()
  390. document_ids.append(document.id)
  391. documents.append(document)
  392. position += 1
  393. elif document_data["data_source"]["type"] == "notion_import":
  394. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  395. exist_page_ids = []
  396. exist_document = dict()
  397. documents = Document.query.filter_by(
  398. dataset_id=dataset.id,
  399. tenant_id=current_user.current_tenant_id,
  400. data_source_type='notion_import',
  401. enabled=True
  402. ).all()
  403. if documents:
  404. for document in documents:
  405. data_source_info = json.loads(document.data_source_info)
  406. exist_page_ids.append(data_source_info['notion_page_id'])
  407. exist_document[data_source_info['notion_page_id']] = document.id
  408. for notion_info in notion_info_list:
  409. workspace_id = notion_info['workspace_id']
  410. data_source_binding = DataSourceBinding.query.filter(
  411. db.and_(
  412. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  413. DataSourceBinding.provider == 'notion',
  414. DataSourceBinding.disabled == False,
  415. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  416. )
  417. ).first()
  418. if not data_source_binding:
  419. raise ValueError('Data source binding not found.')
  420. for page in notion_info['pages']:
  421. if page['page_id'] not in exist_page_ids:
  422. data_source_info = {
  423. "notion_workspace_id": workspace_id,
  424. "notion_page_id": page['page_id'],
  425. "notion_page_icon": page['page_icon'],
  426. "type": page['type']
  427. }
  428. document = DocumentService.save_document(dataset, dataset_process_rule.id,
  429. document_data["data_source"]["type"],
  430. data_source_info, created_from, position,
  431. account, page['page_name'], batch)
  432. # if page['type'] == 'database':
  433. # document.splitting_completed_at = datetime.datetime.utcnow()
  434. # document.cleaning_completed_at = datetime.datetime.utcnow()
  435. # document.parsing_completed_at = datetime.datetime.utcnow()
  436. # document.completed_at = datetime.datetime.utcnow()
  437. # document.indexing_status = 'completed'
  438. # document.word_count = 0
  439. # document.tokens = 0
  440. # document.indexing_latency = 0
  441. db.session.add(document)
  442. db.session.flush()
  443. # if page['type'] != 'database':
  444. document_ids.append(document.id)
  445. documents.append(document)
  446. position += 1
  447. else:
  448. exist_document.pop(page['page_id'])
  449. # delete not selected documents
  450. if len(exist_document) > 0:
  451. clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
  452. db.session.commit()
  453. # trigger async task
  454. document_indexing_task.delay(dataset.id, document_ids)
  455. return documents, batch
  456. @staticmethod
  457. def save_document(dataset: Dataset, process_rule_id: str, data_source_type: str, data_source_info: dict,
  458. created_from: str, position: int, account: Account, name: str, batch: str):
  459. document = Document(
  460. tenant_id=dataset.tenant_id,
  461. dataset_id=dataset.id,
  462. position=position,
  463. data_source_type=data_source_type,
  464. data_source_info=json.dumps(data_source_info),
  465. dataset_process_rule_id=process_rule_id,
  466. batch=batch,
  467. name=name,
  468. created_from=created_from,
  469. created_by=account.id,
  470. )
  471. return document
  472. @staticmethod
  473. def update_document_with_dataset_id(dataset: Dataset, document_data: dict,
  474. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  475. created_from: str = 'web'):
  476. document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
  477. if document.display_status != 'available':
  478. raise ValueError("Document is not available")
  479. # save process rule
  480. if 'process_rule' in document_data and document_data['process_rule']:
  481. process_rule = document_data["process_rule"]
  482. if process_rule["mode"] == "custom":
  483. dataset_process_rule = DatasetProcessRule(
  484. dataset_id=dataset.id,
  485. mode=process_rule["mode"],
  486. rules=json.dumps(process_rule["rules"]),
  487. created_by=account.id
  488. )
  489. elif process_rule["mode"] == "automatic":
  490. dataset_process_rule = DatasetProcessRule(
  491. dataset_id=dataset.id,
  492. mode=process_rule["mode"],
  493. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  494. created_by=account.id
  495. )
  496. db.session.add(dataset_process_rule)
  497. db.session.commit()
  498. document.dataset_process_rule_id = dataset_process_rule.id
  499. # update document data source
  500. if 'data_source' in document_data and document_data['data_source']:
  501. file_name = ''
  502. data_source_info = {}
  503. if document_data["data_source"]["type"] == "upload_file":
  504. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  505. for file_id in upload_file_list:
  506. file = db.session.query(UploadFile).filter(
  507. UploadFile.tenant_id == dataset.tenant_id,
  508. UploadFile.id == file_id
  509. ).first()
  510. # raise error if file not found
  511. if not file:
  512. raise FileNotExistsError()
  513. file_name = file.name
  514. data_source_info = {
  515. "upload_file_id": file_id,
  516. }
  517. elif document_data["data_source"]["type"] == "notion_import":
  518. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  519. for notion_info in notion_info_list:
  520. workspace_id = notion_info['workspace_id']
  521. data_source_binding = DataSourceBinding.query.filter(
  522. db.and_(
  523. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  524. DataSourceBinding.provider == 'notion',
  525. DataSourceBinding.disabled == False,
  526. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  527. )
  528. ).first()
  529. if not data_source_binding:
  530. raise ValueError('Data source binding not found.')
  531. for page in notion_info['pages']:
  532. data_source_info = {
  533. "notion_workspace_id": workspace_id,
  534. "notion_page_id": page['page_id'],
  535. "notion_page_icon": page['page_icon'],
  536. "type": page['type']
  537. }
  538. document.data_source_type = document_data["data_source"]["type"]
  539. document.data_source_info = json.dumps(data_source_info)
  540. document.name = file_name
  541. # update document to be waiting
  542. document.indexing_status = 'waiting'
  543. document.completed_at = None
  544. document.processing_started_at = None
  545. document.parsing_completed_at = None
  546. document.cleaning_completed_at = None
  547. document.splitting_completed_at = None
  548. document.updated_at = datetime.datetime.utcnow()
  549. document.created_from = created_from
  550. db.session.add(document)
  551. db.session.commit()
  552. # update document segment
  553. update_params = {
  554. DocumentSegment.status: 're_segment'
  555. }
  556. DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
  557. db.session.commit()
  558. # trigger async task
  559. document_indexing_update_task.delay(document.dataset_id, document.id)
  560. return document
  561. @staticmethod
  562. def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
  563. # save dataset
  564. dataset = Dataset(
  565. tenant_id=tenant_id,
  566. name='',
  567. data_source_type=document_data["data_source"]["type"],
  568. indexing_technique=document_data["indexing_technique"],
  569. created_by=account.id
  570. )
  571. db.session.add(dataset)
  572. db.session.flush()
  573. documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
  574. cut_length = 18
  575. cut_name = documents[0].name[:cut_length]
  576. dataset.name = cut_name + '...'
  577. dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name
  578. db.session.commit()
  579. return dataset, documents, batch
  580. @classmethod
  581. def document_create_args_validate(cls, args: dict):
  582. if 'original_document_id' not in args or not args['original_document_id']:
  583. DocumentService.data_source_args_validate(args)
  584. DocumentService.process_rule_args_validate(args)
  585. else:
  586. if ('data_source' not in args and not args['data_source'])\
  587. and ('process_rule' not in args and not args['process_rule']):
  588. raise ValueError("Data source or Process rule is required")
  589. else:
  590. if 'data_source' in args and args['data_source']:
  591. DocumentService.data_source_args_validate(args)
  592. if 'process_rule' in args and args['process_rule']:
  593. DocumentService.process_rule_args_validate(args)
  594. @classmethod
  595. def data_source_args_validate(cls, args: dict):
  596. if 'data_source' not in args or not args['data_source']:
  597. raise ValueError("Data source is required")
  598. if not isinstance(args['data_source'], dict):
  599. raise ValueError("Data source is invalid")
  600. if 'type' not in args['data_source'] or not args['data_source']['type']:
  601. raise ValueError("Data source type is required")
  602. if args['data_source']['type'] not in Document.DATA_SOURCES:
  603. raise ValueError("Data source type is invalid")
  604. if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:
  605. raise ValueError("Data source info is required")
  606. if args['data_source']['type'] == 'upload_file':
  607. if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list']['file_info_list']:
  608. raise ValueError("File source info is required")
  609. if args['data_source']['type'] == 'notion_import':
  610. if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list']['notion_info_list']:
  611. raise ValueError("Notion source info is required")
  612. @classmethod
  613. def process_rule_args_validate(cls, args: dict):
  614. if 'process_rule' not in args or not args['process_rule']:
  615. raise ValueError("Process rule is required")
  616. if not isinstance(args['process_rule'], dict):
  617. raise ValueError("Process rule is invalid")
  618. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  619. raise ValueError("Process rule mode is required")
  620. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  621. raise ValueError("Process rule mode is invalid")
  622. if args['process_rule']['mode'] == 'automatic':
  623. args['process_rule']['rules'] = {}
  624. else:
  625. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  626. raise ValueError("Process rule rules is required")
  627. if not isinstance(args['process_rule']['rules'], dict):
  628. raise ValueError("Process rule rules is invalid")
  629. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  630. or args['process_rule']['rules']['pre_processing_rules'] is None:
  631. raise ValueError("Process rule pre_processing_rules is required")
  632. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  633. raise ValueError("Process rule pre_processing_rules is invalid")
  634. unique_pre_processing_rule_dicts = {}
  635. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  636. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  637. raise ValueError("Process rule pre_processing_rules id is required")
  638. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  639. raise ValueError("Process rule pre_processing_rules id is invalid")
  640. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  641. raise ValueError("Process rule pre_processing_rules enabled is required")
  642. if not isinstance(pre_processing_rule['enabled'], bool):
  643. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  644. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  645. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  646. if 'segmentation' not in args['process_rule']['rules'] \
  647. or args['process_rule']['rules']['segmentation'] is None:
  648. raise ValueError("Process rule segmentation is required")
  649. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  650. raise ValueError("Process rule segmentation is invalid")
  651. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  652. or not args['process_rule']['rules']['segmentation']['separator']:
  653. raise ValueError("Process rule segmentation separator is required")
  654. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  655. raise ValueError("Process rule segmentation separator is invalid")
  656. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  657. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  658. raise ValueError("Process rule segmentation max_tokens is required")
  659. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  660. raise ValueError("Process rule segmentation max_tokens is invalid")
  661. @classmethod
  662. def estimate_args_validate(cls, args: dict):
  663. if 'info_list' not in args or not args['info_list']:
  664. raise ValueError("Data source info is required")
  665. if not isinstance(args['info_list'], dict):
  666. raise ValueError("Data info is invalid")
  667. if 'process_rule' not in args or not args['process_rule']:
  668. raise ValueError("Process rule is required")
  669. if not isinstance(args['process_rule'], dict):
  670. raise ValueError("Process rule is invalid")
  671. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  672. raise ValueError("Process rule mode is required")
  673. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  674. raise ValueError("Process rule mode is invalid")
  675. if args['process_rule']['mode'] == 'automatic':
  676. args['process_rule']['rules'] = {}
  677. else:
  678. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  679. raise ValueError("Process rule rules is required")
  680. if not isinstance(args['process_rule']['rules'], dict):
  681. raise ValueError("Process rule rules is invalid")
  682. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  683. or args['process_rule']['rules']['pre_processing_rules'] is None:
  684. raise ValueError("Process rule pre_processing_rules is required")
  685. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  686. raise ValueError("Process rule pre_processing_rules is invalid")
  687. unique_pre_processing_rule_dicts = {}
  688. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  689. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  690. raise ValueError("Process rule pre_processing_rules id is required")
  691. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  692. raise ValueError("Process rule pre_processing_rules id is invalid")
  693. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  694. raise ValueError("Process rule pre_processing_rules enabled is required")
  695. if not isinstance(pre_processing_rule['enabled'], bool):
  696. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  697. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  698. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  699. if 'segmentation' not in args['process_rule']['rules'] \
  700. or args['process_rule']['rules']['segmentation'] is None:
  701. raise ValueError("Process rule segmentation is required")
  702. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  703. raise ValueError("Process rule segmentation is invalid")
  704. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  705. or not args['process_rule']['rules']['segmentation']['separator']:
  706. raise ValueError("Process rule segmentation separator is required")
  707. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  708. raise ValueError("Process rule segmentation separator is invalid")
  709. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  710. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  711. raise ValueError("Process rule segmentation max_tokens is required")
  712. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  713. raise ValueError("Process rule segmentation max_tokens is invalid")