Jyong c6b0dc6a29 update dataset embedding model, update document status to be indexing (#7145) před 8 měsíci
..
configs d839f1ada7 version to 0.6.16 (#6972) před 8 měsíci
constants 536c43257b refactor(*): Update hard-code '[__HIDDEN__]' to the constant. (#7048) před 8 měsíci
contexts 5e6fc58db3 Feat/environment variables in workflow (#6515) před 9 měsíci
controllers 536c43257b refactor(*): Update hard-code '[__HIDDEN__]' to the constant. (#7048) před 8 měsíci
core 425174e82f feat: update ops trace (#7102) před 8 měsíci
docker f656e1bae2 fix: ensure db migration in docker entry script running with `upgrade-db` command for proper locking (#6946) před 8 měsíci
events d320d1468d Feat/delete file when clean document (#5882) před 9 měsíci
extensions feb4576ee7 chore: update SQLAlchemy configuration with custom naming convention (#6854) před 8 měsíci
fields 8157fccf6d delete weight_type (#6865) před 8 měsíci
libs a98284b1ef refactor(api): Switch to `dify_config` (#6750) před 8 měsíci
migrations f667ef98cb Feat/update tools length (#7141) před 8 měsíci
models f667ef98cb Feat/update tools length (#7141) před 8 měsíci
schedule 5e6fc58db3 Feat/environment variables in workflow (#6515) před 9 měsíci
services 425174e82f feat: update ops trace (#7102) před 8 měsíci
tasks c6b0dc6a29 update dataset embedding model, update document status to be indexing (#7145) před 8 měsíci
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) před 9 měsíci
tests a7162240e6 feat: add text-embedding functon and LLM models to Siliconflow (#7090) před 8 měsíci
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) před 10 měsíci
.env.example ecb9c311b5 chore: make prompt generator max tokens configurable (#6693) před 9 měsíci
Dockerfile 169cde6c3c add nltk punkt resource (#7063) před 8 měsíci
README.md fb5e3662d5 Chores: add missing profile for middleware docker compose cmd and fix ssrf-proxy doc link (#6372) před 9 měsíci
app.py 545d3c5a93 chore: Add processId field for metrics of threads/db-pool-stat/health (#6797) před 8 měsíci
commands.py a98284b1ef refactor(api): Switch to `dify_config` (#6750) před 8 měsíci
poetry.lock 312d905c9b chore: update duckduckgo tool (#6983) před 8 měsíci
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) před 10 měsíci
pyproject.toml 312d905c9b chore: update duckduckgo tool (#6983) před 8 měsíci

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh