dufei 5af2df0cd5 fix: qwen fc error (#6620) 9 kuukautta sitten
..
configs 49729647ea bump to 0.6.15 (#6592) 9 kuukautta sitten
constants 5e6fc58db3 Feat/environment variables in workflow (#6515) 9 kuukautta sitten
contexts 5e6fc58db3 Feat/environment variables in workflow (#6515) 9 kuukautta sitten
controllers 8123a00e97 feat: update prompt generate (#6516) 9 kuukautta sitten
core 5af2df0cd5 fix: qwen fc error (#6620) 9 kuukautta sitten
docker 5236cb1888 fix: kill signal is not passed to the main process (#6159) 9 kuukautta sitten
events d320d1468d Feat/delete file when clean document (#5882) 9 kuukautta sitten
extensions 7c397f5722 update celery beat scheduler time to env (#6352) 9 kuukautta sitten
fields e4bb943fe5 Feat/delete single dataset retrival (#6570) 9 kuukautta sitten
libs 617847e3c0 fix(api/services/app_generate_service.py): Remove wrong type hints. (#6535) 9 kuukautta sitten
migrations f324374b95 Fix/6615 40 varchar limit on model name (#6623) 9 kuukautta sitten
models f324374b95 Fix/6615 40 varchar limit on model name (#6623) 9 kuukautta sitten
schedule 5e6fc58db3 Feat/environment variables in workflow (#6515) 9 kuukautta sitten
services e4bb943fe5 Feat/delete single dataset retrival (#6570) 9 kuukautta sitten
tasks 443e96777b update empty document caused delete exist collection (#6392) 9 kuukautta sitten
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) 9 kuukautta sitten
tests 2bc0632d0d fix(segments): Support NoneType. (#6581) 9 kuukautta sitten
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) 10 kuukautta sitten
.env.example 7c397f5722 update celery beat scheduler time to env (#6352) 9 kuukautta sitten
Dockerfile 9b7c74a5d9 chore: skip pip upgrade preparation in api dockerfile (#5999) 9 kuukautta sitten
README.md 2d6624cf9e typo: Update README.md (#5987) 9 kuukautta sitten
app.py 5e6fc58db3 Feat/environment variables in workflow (#6515) 9 kuukautta sitten
commands.py 7c70eb87bc feat: support AnalyticDB vector store (#5586) 9 kuukautta sitten
poetry.lock e4bb943fe5 Feat/delete single dataset retrival (#6570) 9 kuukautta sitten
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) 10 kuukautta sitten
pyproject.toml e4bb943fe5 Feat/delete single dataset retrival (#6570) 9 kuukautta sitten

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   docker compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh