dataset_retrieval.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375
  1. import threading
  2. from typing import Optional, cast
  3. from flask import Flask, current_app
  4. from core.app.app_config.entities import DatasetEntity, DatasetRetrieveConfigEntity
  5. from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
  6. from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
  7. from core.entities.agent_entities import PlanningStrategy
  8. from core.memory.token_buffer_memory import TokenBufferMemory
  9. from core.model_manager import ModelInstance, ModelManager
  10. from core.model_runtime.entities.message_entities import PromptMessageTool
  11. from core.model_runtime.entities.model_entities import ModelFeature, ModelType
  12. from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
  13. from core.rag.datasource.retrieval_service import RetrievalService
  14. from core.rag.models.document import Document
  15. from core.rag.retrieval.router.multi_dataset_function_call_router import FunctionCallMultiDatasetRouter
  16. from core.rag.retrieval.router.multi_dataset_react_route import ReactMultiDatasetRouter
  17. from core.rerank.rerank import RerankRunner
  18. from extensions.ext_database import db
  19. from models.dataset import Dataset, DatasetQuery, DocumentSegment
  20. from models.dataset import Document as DatasetDocument
  21. default_retrieval_model = {
  22. 'search_method': 'semantic_search',
  23. 'reranking_enable': False,
  24. 'reranking_model': {
  25. 'reranking_provider_name': '',
  26. 'reranking_model_name': ''
  27. },
  28. 'top_k': 2,
  29. 'score_threshold_enabled': False
  30. }
  31. class DatasetRetrieval:
  32. def retrieve(self, app_id: str, user_id: str, tenant_id: str,
  33. model_config: ModelConfigWithCredentialsEntity,
  34. config: DatasetEntity,
  35. query: str,
  36. invoke_from: InvokeFrom,
  37. show_retrieve_source: bool,
  38. hit_callback: DatasetIndexToolCallbackHandler,
  39. memory: Optional[TokenBufferMemory] = None) -> Optional[str]:
  40. """
  41. Retrieve dataset.
  42. :param app_id: app_id
  43. :param user_id: user_id
  44. :param tenant_id: tenant id
  45. :param model_config: model config
  46. :param config: dataset config
  47. :param query: query
  48. :param invoke_from: invoke from
  49. :param show_retrieve_source: show retrieve source
  50. :param hit_callback: hit callback
  51. :param memory: memory
  52. :return:
  53. """
  54. dataset_ids = config.dataset_ids
  55. if len(dataset_ids) == 0:
  56. return None
  57. retrieve_config = config.retrieve_config
  58. # check model is support tool calling
  59. model_type_instance = model_config.provider_model_bundle.model_type_instance
  60. model_type_instance = cast(LargeLanguageModel, model_type_instance)
  61. model_manager = ModelManager()
  62. model_instance = model_manager.get_model_instance(
  63. tenant_id=tenant_id,
  64. model_type=ModelType.LLM,
  65. provider=model_config.provider,
  66. model=model_config.model
  67. )
  68. # get model schema
  69. model_schema = model_type_instance.get_model_schema(
  70. model=model_config.model,
  71. credentials=model_config.credentials
  72. )
  73. if not model_schema:
  74. return None
  75. planning_strategy = PlanningStrategy.REACT_ROUTER
  76. features = model_schema.features
  77. if features:
  78. if ModelFeature.TOOL_CALL in features \
  79. or ModelFeature.MULTI_TOOL_CALL in features:
  80. planning_strategy = PlanningStrategy.ROUTER
  81. available_datasets = []
  82. for dataset_id in dataset_ids:
  83. # get dataset from dataset id
  84. dataset = db.session.query(Dataset).filter(
  85. Dataset.tenant_id == tenant_id,
  86. Dataset.id == dataset_id
  87. ).first()
  88. # pass if dataset is not available
  89. if not dataset:
  90. continue
  91. # pass if dataset is not available
  92. if (dataset and dataset.available_document_count == 0
  93. and dataset.available_document_count == 0):
  94. continue
  95. available_datasets.append(dataset)
  96. all_documents = []
  97. user_from = 'account' if invoke_from in [InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER] else 'end_user'
  98. if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
  99. all_documents = self.single_retrieve(app_id, tenant_id, user_id, user_from, available_datasets, query,
  100. model_instance,
  101. model_config, planning_strategy)
  102. elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
  103. all_documents = self.multiple_retrieve(app_id, tenant_id, user_id, user_from,
  104. available_datasets, query, retrieve_config.top_k,
  105. retrieve_config.score_threshold,
  106. retrieve_config.reranking_model.get('reranking_provider_name'),
  107. retrieve_config.reranking_model.get('reranking_model_name'))
  108. document_score_list = {}
  109. for item in all_documents:
  110. if 'score' in item.metadata and item.metadata['score']:
  111. document_score_list[item.metadata['doc_id']] = item.metadata['score']
  112. document_context_list = []
  113. index_node_ids = [document.metadata['doc_id'] for document in all_documents]
  114. segments = DocumentSegment.query.filter(
  115. DocumentSegment.dataset_id.in_(dataset_ids),
  116. DocumentSegment.completed_at.isnot(None),
  117. DocumentSegment.status == 'completed',
  118. DocumentSegment.enabled == True,
  119. DocumentSegment.index_node_id.in_(index_node_ids)
  120. ).all()
  121. if segments:
  122. index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
  123. sorted_segments = sorted(segments,
  124. key=lambda segment: index_node_id_to_position.get(segment.index_node_id,
  125. float('inf')))
  126. for segment in sorted_segments:
  127. if segment.answer:
  128. document_context_list.append(f'question:{segment.content} answer:{segment.answer}')
  129. else:
  130. document_context_list.append(segment.content)
  131. if show_retrieve_source:
  132. context_list = []
  133. resource_number = 1
  134. for segment in sorted_segments:
  135. dataset = Dataset.query.filter_by(
  136. id=segment.dataset_id
  137. ).first()
  138. document = DatasetDocument.query.filter(DatasetDocument.id == segment.document_id,
  139. DatasetDocument.enabled == True,
  140. DatasetDocument.archived == False,
  141. ).first()
  142. if dataset and document:
  143. source = {
  144. 'position': resource_number,
  145. 'dataset_id': dataset.id,
  146. 'dataset_name': dataset.name,
  147. 'document_id': document.id,
  148. 'document_name': document.name,
  149. 'data_source_type': document.data_source_type,
  150. 'segment_id': segment.id,
  151. 'retriever_from': invoke_from.to_source(),
  152. 'score': document_score_list.get(segment.index_node_id, None)
  153. }
  154. if invoke_from.to_source() == 'dev':
  155. source['hit_count'] = segment.hit_count
  156. source['word_count'] = segment.word_count
  157. source['segment_position'] = segment.position
  158. source['index_node_hash'] = segment.index_node_hash
  159. if segment.answer:
  160. source['content'] = f'question:{segment.content} \nanswer:{segment.answer}'
  161. else:
  162. source['content'] = segment.content
  163. context_list.append(source)
  164. resource_number += 1
  165. if hit_callback:
  166. hit_callback.return_retriever_resource_info(context_list)
  167. return str("\n".join(document_context_list))
  168. return ''
  169. def single_retrieve(self, app_id: str,
  170. tenant_id: str,
  171. user_id: str,
  172. user_from: str,
  173. available_datasets: list,
  174. query: str,
  175. model_instance: ModelInstance,
  176. model_config: ModelConfigWithCredentialsEntity,
  177. planning_strategy: PlanningStrategy,
  178. ):
  179. tools = []
  180. for dataset in available_datasets:
  181. description = dataset.description
  182. if not description:
  183. description = 'useful for when you want to answer queries about the ' + dataset.name
  184. description = description.replace('\n', '').replace('\r', '')
  185. message_tool = PromptMessageTool(
  186. name=dataset.id,
  187. description=description,
  188. parameters={
  189. "type": "object",
  190. "properties": {},
  191. "required": [],
  192. }
  193. )
  194. tools.append(message_tool)
  195. dataset_id = None
  196. if planning_strategy == PlanningStrategy.REACT_ROUTER:
  197. react_multi_dataset_router = ReactMultiDatasetRouter()
  198. dataset_id = react_multi_dataset_router.invoke(query, tools, model_config, model_instance,
  199. user_id, tenant_id)
  200. elif planning_strategy == PlanningStrategy.ROUTER:
  201. function_call_router = FunctionCallMultiDatasetRouter()
  202. dataset_id = function_call_router.invoke(query, tools, model_config, model_instance)
  203. if dataset_id:
  204. # get retrieval model config
  205. dataset = db.session.query(Dataset).filter(
  206. Dataset.id == dataset_id
  207. ).first()
  208. if dataset:
  209. retrieval_model_config = dataset.retrieval_model \
  210. if dataset.retrieval_model else default_retrieval_model
  211. # get top k
  212. top_k = retrieval_model_config['top_k']
  213. # get retrieval method
  214. if dataset.indexing_technique == "economy":
  215. retrival_method = 'keyword_search'
  216. else:
  217. retrival_method = retrieval_model_config['search_method']
  218. # get reranking model
  219. reranking_model = retrieval_model_config['reranking_model'] \
  220. if retrieval_model_config['reranking_enable'] else None
  221. # get score threshold
  222. score_threshold = .0
  223. score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
  224. if score_threshold_enabled:
  225. score_threshold = retrieval_model_config.get("score_threshold")
  226. results = RetrievalService.retrieve(retrival_method=retrival_method, dataset_id=dataset.id,
  227. query=query,
  228. top_k=top_k, score_threshold=score_threshold,
  229. reranking_model=reranking_model)
  230. self._on_query(query, [dataset_id], app_id, user_from, user_id)
  231. if results:
  232. self._on_retrival_end(results)
  233. return results
  234. return []
  235. def multiple_retrieve(self,
  236. app_id: str,
  237. tenant_id: str,
  238. user_id: str,
  239. user_from: str,
  240. available_datasets: list,
  241. query: str,
  242. top_k: int,
  243. score_threshold: float,
  244. reranking_provider_name: str,
  245. reranking_model_name: str):
  246. threads = []
  247. all_documents = []
  248. dataset_ids = [dataset.id for dataset in available_datasets]
  249. for dataset in available_datasets:
  250. retrieval_thread = threading.Thread(target=self._retriever, kwargs={
  251. 'flask_app': current_app._get_current_object(),
  252. 'dataset_id': dataset.id,
  253. 'query': query,
  254. 'top_k': top_k,
  255. 'all_documents': all_documents,
  256. })
  257. threads.append(retrieval_thread)
  258. retrieval_thread.start()
  259. for thread in threads:
  260. thread.join()
  261. # do rerank for searched documents
  262. model_manager = ModelManager()
  263. rerank_model_instance = model_manager.get_model_instance(
  264. tenant_id=tenant_id,
  265. provider=reranking_provider_name,
  266. model_type=ModelType.RERANK,
  267. model=reranking_model_name
  268. )
  269. rerank_runner = RerankRunner(rerank_model_instance)
  270. all_documents = rerank_runner.run(query, all_documents,
  271. score_threshold,
  272. top_k)
  273. self._on_query(query, dataset_ids, app_id, user_from, user_id)
  274. if all_documents:
  275. self._on_retrival_end(all_documents)
  276. return all_documents
  277. def _on_retrival_end(self, documents: list[Document]) -> None:
  278. """Handle retrival end."""
  279. for document in documents:
  280. query = db.session.query(DocumentSegment).filter(
  281. DocumentSegment.index_node_id == document.metadata['doc_id']
  282. )
  283. # if 'dataset_id' in document.metadata:
  284. if 'dataset_id' in document.metadata:
  285. query = query.filter(DocumentSegment.dataset_id == document.metadata['dataset_id'])
  286. # add hit count to document segment
  287. query.update(
  288. {DocumentSegment.hit_count: DocumentSegment.hit_count + 1},
  289. synchronize_session=False
  290. )
  291. db.session.commit()
  292. def _on_query(self, query: str, dataset_ids: list[str], app_id: str, user_from: str, user_id: str) -> None:
  293. """
  294. Handle query.
  295. """
  296. if not query:
  297. return
  298. for dataset_id in dataset_ids:
  299. dataset_query = DatasetQuery(
  300. dataset_id=dataset_id,
  301. content=query,
  302. source='app',
  303. source_app_id=app_id,
  304. created_by_role=user_from,
  305. created_by=user_id
  306. )
  307. db.session.add(dataset_query)
  308. db.session.commit()
  309. def _retriever(self, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list):
  310. with flask_app.app_context():
  311. dataset = db.session.query(Dataset).filter(
  312. Dataset.id == dataset_id
  313. ).first()
  314. if not dataset:
  315. return []
  316. # get retrieval model , if the model is not setting , using default
  317. retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
  318. if dataset.indexing_technique == "economy":
  319. # use keyword table query
  320. documents = RetrievalService.retrieve(retrival_method='keyword_search',
  321. dataset_id=dataset.id,
  322. query=query,
  323. top_k=top_k
  324. )
  325. if documents:
  326. all_documents.extend(documents)
  327. else:
  328. if top_k > 0:
  329. # retrieval source
  330. documents = RetrievalService.retrieve(retrival_method=retrieval_model['search_method'],
  331. dataset_id=dataset.id,
  332. query=query,
  333. top_k=top_k,
  334. score_threshold=retrieval_model['score_threshold']
  335. if retrieval_model['score_threshold_enabled'] else None,
  336. reranking_model=retrieval_model['reranking_model']
  337. if retrieval_model['reranking_enable'] else None
  338. )
  339. all_documents.extend(documents)