1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586 |
- import logging
- from typing import List
- import numpy as np
- from langchain.embeddings.base import Embeddings
- from sqlalchemy.exc import IntegrityError
- from core.model_providers.models.embedding.base import BaseEmbedding
- from extensions.ext_database import db
- from libs import helper
- from models.dataset import Embedding
- class CacheEmbedding(Embeddings):
- def __init__(self, embeddings: BaseEmbedding):
- self._embeddings = embeddings
- def embed_documents(self, texts: List[str]) -> List[List[float]]:
- """Embed search docs."""
- # use doc embedding cache or store if not exists
- text_embeddings = []
- embedding_queue_texts = []
- for text in texts:
- hash = helper.generate_text_hash(text)
- embedding = db.session.query(Embedding).filter_by(model_name=self._embeddings.name, hash=hash).first()
- if embedding:
- text_embeddings.append(embedding.get_embedding())
- else:
- embedding_queue_texts.append(text)
- if embedding_queue_texts:
- try:
- embedding_results = self._embeddings.client.embed_documents(embedding_queue_texts)
- except Exception as ex:
- raise self._embeddings.handle_exceptions(ex)
- i = 0
- normalized_embedding_results = []
- for text in embedding_queue_texts:
- hash = helper.generate_text_hash(text)
- try:
- embedding = Embedding(model_name=self._embeddings.name, hash=hash)
- vector = embedding_results[i]
- normalized_embedding = (vector / np.linalg.norm(vector)).tolist()
- normalized_embedding_results.append(normalized_embedding)
- embedding.set_embedding(normalized_embedding)
- db.session.add(embedding)
- db.session.commit()
- except IntegrityError:
- db.session.rollback()
- continue
- except:
- logging.exception('Failed to add embedding to db')
- continue
- finally:
- i += 1
- text_embeddings.extend(normalized_embedding_results)
- return text_embeddings
- def embed_query(self, text: str) -> List[float]:
- """Embed query text."""
- # use doc embedding cache or store if not exists
- hash = helper.generate_text_hash(text)
- embedding = db.session.query(Embedding).filter_by(model_name=self._embeddings.name, hash=hash).first()
- if embedding:
- return embedding.get_embedding()
- try:
- embedding_results = self._embeddings.client.embed_query(text)
- embedding_results = (embedding_results / np.linalg.norm(embedding_results)).tolist()
- except Exception as ex:
- raise self._embeddings.handle_exceptions(ex)
- try:
- embedding = Embedding(model_name=self._embeddings.name, hash=hash)
- embedding.set_embedding(embedding_results)
- db.session.add(embedding)
- db.session.commit()
- except IntegrityError:
- db.session.rollback()
- except:
- logging.exception('Failed to add embedding to db')
- return embedding_results
|