Bowen Liang f9d00e0498 chore: use poetry for linter tools installation and bump Ruff from 0.4 to 0.5 (#6081) пре 9 месеци
..
configs ce930f19b9 fix dataset operator (#6064) пре 9 месеци
constants 6ef401a9f0 feat:add tts-streaming config and future (#5492) пре 9 месеци
controllers ce930f19b9 fix dataset operator (#6064) пре 9 месеци
core d27e3ab99d chore: remove unresolved reference (#6110) пре 9 месеци
docker cb09dbef66 feat: correctly delete applications using Celery workers (#5787) пре 9 месеци
events cb09dbef66 feat: correctly delete applications using Celery workers (#5787) пре 9 месеци
extensions cbbe28f40d fix azure stream download (#6063) пре 9 месеци
fields 4c0a31d38b FR: #4048 - Add color customization to the chatbot (#4885) пре 10 месеци
libs 00b4cc3cd4 feat: implement forgot password feature (#5534) пре 9 месеци
migrations ce930f19b9 fix dataset operator (#6064) пре 9 месеци
models ce930f19b9 fix dataset operator (#6064) пре 9 месеци
schedule 6c4e6bf1d6 Feat/dify rag (#2528) пре 1 година
services ce930f19b9 fix dataset operator (#6064) пре 9 месеци
tasks 00b4cc3cd4 feat: implement forgot password feature (#5534) пре 9 месеци
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) пре 9 месеци
tests 7c70eb87bc feat: support AnalyticDB vector store (#5586) пре 9 месеци
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) пре 10 месеци
.env.example 7c70eb87bc feat: support AnalyticDB vector store (#5586) пре 9 месеци
Dockerfile 9b7c74a5d9 chore: skip pip upgrade preparation in api dockerfile (#5999) пре 9 месеци
README.md 2d6624cf9e typo: Update README.md (#5987) пре 9 месеци
app.py d7f75d17cc Chore/remove-unused-code (#5917) пре 9 месеци
commands.py 7c70eb87bc feat: support AnalyticDB vector store (#5586) пре 9 месеци
poetry.lock f9d00e0498 chore: use poetry for linter tools installation and bump Ruff from 0.4 to 0.5 (#6081) пре 9 месеци
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) пре 10 месеци
pyproject.toml f9d00e0498 chore: use poetry for linter tools installation and bump Ruff from 0.4 to 0.5 (#6081) пре 9 месеци

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   docker compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh