Bowen Liang f9d00e0498 chore: use poetry for linter tools installation and bump Ruff from 0.4 to 0.5 (#6081) il y a 9 mois
..
configs ce930f19b9 fix dataset operator (#6064) il y a 9 mois
constants 6ef401a9f0 feat:add tts-streaming config and future (#5492) il y a 9 mois
controllers ce930f19b9 fix dataset operator (#6064) il y a 9 mois
core d27e3ab99d chore: remove unresolved reference (#6110) il y a 9 mois
docker cb09dbef66 feat: correctly delete applications using Celery workers (#5787) il y a 9 mois
events cb09dbef66 feat: correctly delete applications using Celery workers (#5787) il y a 9 mois
extensions cbbe28f40d fix azure stream download (#6063) il y a 9 mois
fields 4c0a31d38b FR: #4048 - Add color customization to the chatbot (#4885) il y a 10 mois
libs 00b4cc3cd4 feat: implement forgot password feature (#5534) il y a 9 mois
migrations ce930f19b9 fix dataset operator (#6064) il y a 9 mois
models ce930f19b9 fix dataset operator (#6064) il y a 9 mois
schedule 6c4e6bf1d6 Feat/dify rag (#2528) il y a 1 an
services ce930f19b9 fix dataset operator (#6064) il y a 9 mois
tasks 00b4cc3cd4 feat: implement forgot password feature (#5534) il y a 9 mois
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) il y a 9 mois
tests 7c70eb87bc feat: support AnalyticDB vector store (#5586) il y a 9 mois
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) il y a 10 mois
.env.example 7c70eb87bc feat: support AnalyticDB vector store (#5586) il y a 9 mois
Dockerfile 9b7c74a5d9 chore: skip pip upgrade preparation in api dockerfile (#5999) il y a 9 mois
README.md 2d6624cf9e typo: Update README.md (#5987) il y a 9 mois
app.py d7f75d17cc Chore/remove-unused-code (#5917) il y a 9 mois
commands.py 7c70eb87bc feat: support AnalyticDB vector store (#5586) il y a 9 mois
poetry.lock f9d00e0498 chore: use poetry for linter tools installation and bump Ruff from 0.4 to 0.5 (#6081) il y a 9 mois
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) il y a 10 mois
pyproject.toml f9d00e0498 chore: use poetry for linter tools installation and bump Ruff from 0.4 to 0.5 (#6081) il y a 9 mois

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   docker compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh