indexing_runner.py 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851
  1. import datetime
  2. import json
  3. import logging
  4. import re
  5. import threading
  6. import time
  7. import uuid
  8. from typing import Optional, List, cast
  9. from flask import current_app, Flask
  10. from flask_login import current_user
  11. from langchain.schema import Document
  12. from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter
  13. from sqlalchemy.orm.exc import ObjectDeletedError
  14. from core.data_loader.file_extractor import FileExtractor
  15. from core.data_loader.loader.notion import NotionLoader
  16. from core.docstore.dataset_docstore import DatasetDocumentStore
  17. from core.generator.llm_generator import LLMGenerator
  18. from core.index.index import IndexBuilder
  19. from core.model_manager import ModelManager
  20. from core.errors.error import ProviderTokenNotInitError
  21. from core.model_runtime.entities.model_entities import ModelType, PriceType
  22. from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
  23. from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
  24. from core.spiltter.fixed_text_splitter import FixedRecursiveCharacterTextSplitter
  25. from extensions.ext_database import db
  26. from extensions.ext_redis import redis_client
  27. from extensions.ext_storage import storage
  28. from libs import helper
  29. from models.dataset import Document as DatasetDocument
  30. from models.dataset import Dataset, DocumentSegment, DatasetProcessRule
  31. from models.model import UploadFile
  32. from models.source import DataSourceBinding
  33. class IndexingRunner:
  34. def __init__(self):
  35. self.storage = storage
  36. self.model_manager = ModelManager()
  37. def run(self, dataset_documents: List[DatasetDocument]):
  38. """Run the indexing process."""
  39. for dataset_document in dataset_documents:
  40. try:
  41. # get dataset
  42. dataset = Dataset.query.filter_by(
  43. id=dataset_document.dataset_id
  44. ).first()
  45. if not dataset:
  46. raise ValueError("no dataset found")
  47. # get the process rule
  48. processing_rule = db.session.query(DatasetProcessRule). \
  49. filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
  50. first()
  51. # load file
  52. text_docs = self._load_data(dataset_document)
  53. # get splitter
  54. splitter = self._get_splitter(processing_rule)
  55. # split to documents
  56. documents = self._step_split(
  57. text_docs=text_docs,
  58. splitter=splitter,
  59. dataset=dataset,
  60. dataset_document=dataset_document,
  61. processing_rule=processing_rule
  62. )
  63. self._build_index(
  64. dataset=dataset,
  65. dataset_document=dataset_document,
  66. documents=documents
  67. )
  68. except DocumentIsPausedException:
  69. raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
  70. except ProviderTokenNotInitError as e:
  71. dataset_document.indexing_status = 'error'
  72. dataset_document.error = str(e.description)
  73. dataset_document.stopped_at = datetime.datetime.utcnow()
  74. db.session.commit()
  75. except ObjectDeletedError:
  76. logging.warning('Document deleted, document id: {}'.format(dataset_document.id))
  77. except Exception as e:
  78. logging.exception("consume document failed")
  79. dataset_document.indexing_status = 'error'
  80. dataset_document.error = str(e)
  81. dataset_document.stopped_at = datetime.datetime.utcnow()
  82. db.session.commit()
  83. def run_in_splitting_status(self, dataset_document: DatasetDocument):
  84. """Run the indexing process when the index_status is splitting."""
  85. try:
  86. # get dataset
  87. dataset = Dataset.query.filter_by(
  88. id=dataset_document.dataset_id
  89. ).first()
  90. if not dataset:
  91. raise ValueError("no dataset found")
  92. # get exist document_segment list and delete
  93. document_segments = DocumentSegment.query.filter_by(
  94. dataset_id=dataset.id,
  95. document_id=dataset_document.id
  96. ).all()
  97. for document_segment in document_segments:
  98. db.session.delete(document_segment)
  99. db.session.commit()
  100. # load file
  101. text_docs = self._load_data(dataset_document)
  102. # get the process rule
  103. processing_rule = db.session.query(DatasetProcessRule). \
  104. filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
  105. first()
  106. # get splitter
  107. splitter = self._get_splitter(processing_rule)
  108. # split to documents
  109. documents = self._step_split(
  110. text_docs=text_docs,
  111. splitter=splitter,
  112. dataset=dataset,
  113. dataset_document=dataset_document,
  114. processing_rule=processing_rule
  115. )
  116. # build index
  117. self._build_index(
  118. dataset=dataset,
  119. dataset_document=dataset_document,
  120. documents=documents
  121. )
  122. except DocumentIsPausedException:
  123. raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
  124. except ProviderTokenNotInitError as e:
  125. dataset_document.indexing_status = 'error'
  126. dataset_document.error = str(e.description)
  127. dataset_document.stopped_at = datetime.datetime.utcnow()
  128. db.session.commit()
  129. except Exception as e:
  130. logging.exception("consume document failed")
  131. dataset_document.indexing_status = 'error'
  132. dataset_document.error = str(e)
  133. dataset_document.stopped_at = datetime.datetime.utcnow()
  134. db.session.commit()
  135. def run_in_indexing_status(self, dataset_document: DatasetDocument):
  136. """Run the indexing process when the index_status is indexing."""
  137. try:
  138. # get dataset
  139. dataset = Dataset.query.filter_by(
  140. id=dataset_document.dataset_id
  141. ).first()
  142. if not dataset:
  143. raise ValueError("no dataset found")
  144. # get exist document_segment list and delete
  145. document_segments = DocumentSegment.query.filter_by(
  146. dataset_id=dataset.id,
  147. document_id=dataset_document.id
  148. ).all()
  149. documents = []
  150. if document_segments:
  151. for document_segment in document_segments:
  152. # transform segment to node
  153. if document_segment.status != "completed":
  154. document = Document(
  155. page_content=document_segment.content,
  156. metadata={
  157. "doc_id": document_segment.index_node_id,
  158. "doc_hash": document_segment.index_node_hash,
  159. "document_id": document_segment.document_id,
  160. "dataset_id": document_segment.dataset_id,
  161. }
  162. )
  163. documents.append(document)
  164. # build index
  165. self._build_index(
  166. dataset=dataset,
  167. dataset_document=dataset_document,
  168. documents=documents
  169. )
  170. except DocumentIsPausedException:
  171. raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
  172. except ProviderTokenNotInitError as e:
  173. dataset_document.indexing_status = 'error'
  174. dataset_document.error = str(e.description)
  175. dataset_document.stopped_at = datetime.datetime.utcnow()
  176. db.session.commit()
  177. except Exception as e:
  178. logging.exception("consume document failed")
  179. dataset_document.indexing_status = 'error'
  180. dataset_document.error = str(e)
  181. dataset_document.stopped_at = datetime.datetime.utcnow()
  182. db.session.commit()
  183. def file_indexing_estimate(self, tenant_id: str, file_details: List[UploadFile], tmp_processing_rule: dict,
  184. doc_form: str = None, doc_language: str = 'English', dataset_id: str = None,
  185. indexing_technique: str = 'economy') -> dict:
  186. """
  187. Estimate the indexing for the document.
  188. """
  189. embedding_model_instance = None
  190. if dataset_id:
  191. dataset = Dataset.query.filter_by(
  192. id=dataset_id
  193. ).first()
  194. if not dataset:
  195. raise ValueError('Dataset not found.')
  196. if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
  197. embedding_model_instance = self.model_manager.get_model_instance(
  198. tenant_id=tenant_id,
  199. provider=dataset.embedding_model_provider,
  200. model_type=ModelType.TEXT_EMBEDDING,
  201. model=dataset.embedding_model
  202. )
  203. else:
  204. if indexing_technique == 'high_quality':
  205. embedding_model_instance = self.model_manager.get_default_model_instance(
  206. tenant_id=tenant_id,
  207. model_type=ModelType.TEXT_EMBEDDING,
  208. )
  209. tokens = 0
  210. preview_texts = []
  211. total_segments = 0
  212. for file_detail in file_details:
  213. # load data from file
  214. text_docs = FileExtractor.load(file_detail)
  215. processing_rule = DatasetProcessRule(
  216. mode=tmp_processing_rule["mode"],
  217. rules=json.dumps(tmp_processing_rule["rules"])
  218. )
  219. # get splitter
  220. splitter = self._get_splitter(processing_rule)
  221. # split to documents
  222. documents = self._split_to_documents_for_estimate(
  223. text_docs=text_docs,
  224. splitter=splitter,
  225. processing_rule=processing_rule
  226. )
  227. total_segments += len(documents)
  228. for document in documents:
  229. if len(preview_texts) < 5:
  230. preview_texts.append(document.page_content)
  231. if indexing_technique == 'high_quality' or embedding_model_instance:
  232. embedding_model_type_instance = embedding_model_instance.model_type_instance
  233. embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
  234. tokens += embedding_model_type_instance.get_num_tokens(
  235. model=embedding_model_instance.model,
  236. credentials=embedding_model_instance.credentials,
  237. texts=[self.filter_string(document.page_content)]
  238. )
  239. if doc_form and doc_form == 'qa_model':
  240. model_instance = self.model_manager.get_default_model_instance(
  241. tenant_id=tenant_id,
  242. model_type=ModelType.LLM
  243. )
  244. model_type_instance = model_instance.model_type_instance
  245. model_type_instance = cast(LargeLanguageModel, model_type_instance)
  246. if len(preview_texts) > 0:
  247. # qa model document
  248. response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0],
  249. doc_language)
  250. document_qa_list = self.format_split_text(response)
  251. price_info = model_type_instance.get_price(
  252. model=model_instance.model,
  253. credentials=model_instance.credentials,
  254. price_type=PriceType.INPUT,
  255. tokens=total_segments * 2000,
  256. )
  257. return {
  258. "total_segments": total_segments * 20,
  259. "tokens": total_segments * 2000,
  260. "total_price": '{:f}'.format(price_info.total_amount),
  261. "currency": price_info.currency,
  262. "qa_preview": document_qa_list,
  263. "preview": preview_texts
  264. }
  265. if embedding_model_instance:
  266. embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_instance.model_type_instance)
  267. embedding_price_info = embedding_model_type_instance.get_price(
  268. model=embedding_model_instance.model,
  269. credentials=embedding_model_instance.credentials,
  270. price_type=PriceType.INPUT,
  271. tokens=tokens
  272. )
  273. return {
  274. "total_segments": total_segments,
  275. "tokens": tokens,
  276. "total_price": '{:f}'.format(embedding_price_info.total_amount) if embedding_model_instance else 0,
  277. "currency": embedding_price_info.currency if embedding_model_instance else 'USD',
  278. "preview": preview_texts
  279. }
  280. def notion_indexing_estimate(self, tenant_id: str, notion_info_list: list, tmp_processing_rule: dict,
  281. doc_form: str = None, doc_language: str = 'English', dataset_id: str = None,
  282. indexing_technique: str = 'economy') -> dict:
  283. """
  284. Estimate the indexing for the document.
  285. """
  286. embedding_model_instance = None
  287. if dataset_id:
  288. dataset = Dataset.query.filter_by(
  289. id=dataset_id
  290. ).first()
  291. if not dataset:
  292. raise ValueError('Dataset not found.')
  293. if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
  294. embedding_model_instance = self.model_manager.get_model_instance(
  295. tenant_id=tenant_id,
  296. provider=dataset.embedding_model_provider,
  297. model_type=ModelType.TEXT_EMBEDDING,
  298. model=dataset.embedding_model
  299. )
  300. else:
  301. if indexing_technique == 'high_quality':
  302. embedding_model_instance = self.model_manager.get_default_model_instance(
  303. tenant_id=tenant_id,
  304. model_type=ModelType.TEXT_EMBEDDING
  305. )
  306. # load data from notion
  307. tokens = 0
  308. preview_texts = []
  309. total_segments = 0
  310. for notion_info in notion_info_list:
  311. workspace_id = notion_info['workspace_id']
  312. data_source_binding = DataSourceBinding.query.filter(
  313. db.and_(
  314. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  315. DataSourceBinding.provider == 'notion',
  316. DataSourceBinding.disabled == False,
  317. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  318. )
  319. ).first()
  320. if not data_source_binding:
  321. raise ValueError('Data source binding not found.')
  322. for page in notion_info['pages']:
  323. loader = NotionLoader(
  324. notion_access_token=data_source_binding.access_token,
  325. notion_workspace_id=workspace_id,
  326. notion_obj_id=page['page_id'],
  327. notion_page_type=page['type']
  328. )
  329. documents = loader.load()
  330. processing_rule = DatasetProcessRule(
  331. mode=tmp_processing_rule["mode"],
  332. rules=json.dumps(tmp_processing_rule["rules"])
  333. )
  334. # get splitter
  335. splitter = self._get_splitter(processing_rule)
  336. # split to documents
  337. documents = self._split_to_documents_for_estimate(
  338. text_docs=documents,
  339. splitter=splitter,
  340. processing_rule=processing_rule
  341. )
  342. total_segments += len(documents)
  343. embedding_model_type_instance = embedding_model_instance.model_type_instance
  344. embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
  345. for document in documents:
  346. if len(preview_texts) < 5:
  347. preview_texts.append(document.page_content)
  348. if indexing_technique == 'high_quality' or embedding_model_instance:
  349. tokens += embedding_model_type_instance.get_num_tokens(
  350. model=embedding_model_instance.model,
  351. credentials=embedding_model_instance.credentials,
  352. texts=[document.page_content]
  353. )
  354. if doc_form and doc_form == 'qa_model':
  355. model_instance = self.model_manager.get_default_model_instance(
  356. tenant_id=tenant_id,
  357. model_type=ModelType.LLM
  358. )
  359. model_type_instance = model_instance.model_type_instance
  360. model_type_instance = cast(LargeLanguageModel, model_type_instance)
  361. if len(preview_texts) > 0:
  362. # qa model document
  363. response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0],
  364. doc_language)
  365. document_qa_list = self.format_split_text(response)
  366. price_info = model_type_instance.get_price(
  367. model=model_instance.model,
  368. credentials=model_instance.credentials,
  369. price_type=PriceType.INPUT,
  370. tokens=total_segments * 2000,
  371. )
  372. return {
  373. "total_segments": total_segments * 20,
  374. "tokens": total_segments * 2000,
  375. "total_price": '{:f}'.format(price_info.total_amount),
  376. "currency": price_info.currency,
  377. "qa_preview": document_qa_list,
  378. "preview": preview_texts
  379. }
  380. embedding_model_type_instance = embedding_model_instance.model_type_instance
  381. embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
  382. embedding_price_info = embedding_model_type_instance.get_price(
  383. model=embedding_model_instance.model,
  384. credentials=embedding_model_instance.credentials,
  385. price_type=PriceType.INPUT,
  386. tokens=tokens
  387. )
  388. return {
  389. "total_segments": total_segments,
  390. "tokens": tokens,
  391. "total_price": '{:f}'.format(embedding_price_info.total_amount) if embedding_model_instance else 0,
  392. "currency": embedding_price_info.currency if embedding_model_instance else 'USD',
  393. "preview": preview_texts
  394. }
  395. def _load_data(self, dataset_document: DatasetDocument, automatic: bool = False) -> List[Document]:
  396. # load file
  397. if dataset_document.data_source_type not in ["upload_file", "notion_import"]:
  398. return []
  399. data_source_info = dataset_document.data_source_info_dict
  400. text_docs = []
  401. if dataset_document.data_source_type == 'upload_file':
  402. if not data_source_info or 'upload_file_id' not in data_source_info:
  403. raise ValueError("no upload file found")
  404. file_detail = db.session.query(UploadFile). \
  405. filter(UploadFile.id == data_source_info['upload_file_id']). \
  406. one_or_none()
  407. if file_detail:
  408. text_docs = FileExtractor.load(file_detail, is_automatic=True)
  409. elif dataset_document.data_source_type == 'notion_import':
  410. loader = NotionLoader.from_document(dataset_document)
  411. text_docs = loader.load()
  412. # update document status to splitting
  413. self._update_document_index_status(
  414. document_id=dataset_document.id,
  415. after_indexing_status="splitting",
  416. extra_update_params={
  417. DatasetDocument.word_count: sum([len(text_doc.page_content) for text_doc in text_docs]),
  418. DatasetDocument.parsing_completed_at: datetime.datetime.utcnow()
  419. }
  420. )
  421. # replace doc id to document model id
  422. text_docs = cast(List[Document], text_docs)
  423. for text_doc in text_docs:
  424. # remove invalid symbol
  425. text_doc.page_content = self.filter_string(text_doc.page_content)
  426. text_doc.metadata['document_id'] = dataset_document.id
  427. text_doc.metadata['dataset_id'] = dataset_document.dataset_id
  428. return text_docs
  429. def filter_string(self, text):
  430. text = re.sub(r'<\|', '<', text)
  431. text = re.sub(r'\|>', '>', text)
  432. text = re.sub(r'[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\x80-\xFF]', '', text)
  433. return text
  434. def _get_splitter(self, processing_rule: DatasetProcessRule) -> TextSplitter:
  435. """
  436. Get the NodeParser object according to the processing rule.
  437. """
  438. if processing_rule.mode == "custom":
  439. # The user-defined segmentation rule
  440. rules = json.loads(processing_rule.rules)
  441. segmentation = rules["segmentation"]
  442. if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > 1000:
  443. raise ValueError("Custom segment length should be between 50 and 1000.")
  444. separator = segmentation["separator"]
  445. if separator:
  446. separator = separator.replace('\\n', '\n')
  447. character_splitter = FixedRecursiveCharacterTextSplitter.from_tiktoken_encoder(
  448. chunk_size=segmentation["max_tokens"],
  449. chunk_overlap=0,
  450. fixed_separator=separator,
  451. separators=["\n\n", "。", ".", " ", ""]
  452. )
  453. else:
  454. # Automatic segmentation
  455. character_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
  456. chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
  457. chunk_overlap=0,
  458. separators=["\n\n", "。", ".", " ", ""]
  459. )
  460. return character_splitter
  461. def _step_split(self, text_docs: List[Document], splitter: TextSplitter,
  462. dataset: Dataset, dataset_document: DatasetDocument, processing_rule: DatasetProcessRule) \
  463. -> List[Document]:
  464. """
  465. Split the text documents into documents and save them to the document segment.
  466. """
  467. documents = self._split_to_documents(
  468. text_docs=text_docs,
  469. splitter=splitter,
  470. processing_rule=processing_rule,
  471. tenant_id=dataset.tenant_id,
  472. document_form=dataset_document.doc_form,
  473. document_language=dataset_document.doc_language
  474. )
  475. # save node to document segment
  476. doc_store = DatasetDocumentStore(
  477. dataset=dataset,
  478. user_id=dataset_document.created_by,
  479. document_id=dataset_document.id
  480. )
  481. # add document segments
  482. doc_store.add_documents(documents)
  483. # update document status to indexing
  484. cur_time = datetime.datetime.utcnow()
  485. self._update_document_index_status(
  486. document_id=dataset_document.id,
  487. after_indexing_status="indexing",
  488. extra_update_params={
  489. DatasetDocument.cleaning_completed_at: cur_time,
  490. DatasetDocument.splitting_completed_at: cur_time,
  491. }
  492. )
  493. # update segment status to indexing
  494. self._update_segments_by_document(
  495. dataset_document_id=dataset_document.id,
  496. update_params={
  497. DocumentSegment.status: "indexing",
  498. DocumentSegment.indexing_at: datetime.datetime.utcnow()
  499. }
  500. )
  501. return documents
  502. def _split_to_documents(self, text_docs: List[Document], splitter: TextSplitter,
  503. processing_rule: DatasetProcessRule, tenant_id: str,
  504. document_form: str, document_language: str) -> List[Document]:
  505. """
  506. Split the text documents into nodes.
  507. """
  508. all_documents = []
  509. all_qa_documents = []
  510. for text_doc in text_docs:
  511. # document clean
  512. document_text = self._document_clean(text_doc.page_content, processing_rule)
  513. text_doc.page_content = document_text
  514. # parse document to nodes
  515. documents = splitter.split_documents([text_doc])
  516. split_documents = []
  517. for document_node in documents:
  518. if document_node.page_content.strip():
  519. doc_id = str(uuid.uuid4())
  520. hash = helper.generate_text_hash(document_node.page_content)
  521. document_node.metadata['doc_id'] = doc_id
  522. document_node.metadata['doc_hash'] = hash
  523. # delete Spliter character
  524. page_content = document_node.page_content
  525. if page_content.startswith(".") or page_content.startswith("。"):
  526. page_content = page_content[1:]
  527. else:
  528. page_content = page_content
  529. document_node.page_content = page_content
  530. split_documents.append(document_node)
  531. all_documents.extend(split_documents)
  532. # processing qa document
  533. if document_form == 'qa_model':
  534. for i in range(0, len(all_documents), 10):
  535. threads = []
  536. sub_documents = all_documents[i:i + 10]
  537. for doc in sub_documents:
  538. document_format_thread = threading.Thread(target=self.format_qa_document, kwargs={
  539. 'flask_app': current_app._get_current_object(),
  540. 'tenant_id': tenant_id, 'document_node': doc, 'all_qa_documents': all_qa_documents,
  541. 'document_language': document_language})
  542. threads.append(document_format_thread)
  543. document_format_thread.start()
  544. for thread in threads:
  545. thread.join()
  546. return all_qa_documents
  547. return all_documents
  548. def format_qa_document(self, flask_app: Flask, tenant_id: str, document_node, all_qa_documents, document_language):
  549. format_documents = []
  550. if document_node.page_content is None or not document_node.page_content.strip():
  551. return
  552. with flask_app.app_context():
  553. try:
  554. # qa model document
  555. response = LLMGenerator.generate_qa_document(tenant_id, document_node.page_content, document_language)
  556. document_qa_list = self.format_split_text(response)
  557. qa_documents = []
  558. for result in document_qa_list:
  559. qa_document = Document(page_content=result['question'], metadata=document_node.metadata.copy())
  560. doc_id = str(uuid.uuid4())
  561. hash = helper.generate_text_hash(result['question'])
  562. qa_document.metadata['answer'] = result['answer']
  563. qa_document.metadata['doc_id'] = doc_id
  564. qa_document.metadata['doc_hash'] = hash
  565. qa_documents.append(qa_document)
  566. format_documents.extend(qa_documents)
  567. except Exception as e:
  568. logging.exception(e)
  569. all_qa_documents.extend(format_documents)
  570. def _split_to_documents_for_estimate(self, text_docs: List[Document], splitter: TextSplitter,
  571. processing_rule: DatasetProcessRule) -> List[Document]:
  572. """
  573. Split the text documents into nodes.
  574. """
  575. all_documents = []
  576. for text_doc in text_docs:
  577. # document clean
  578. document_text = self._document_clean(text_doc.page_content, processing_rule)
  579. text_doc.page_content = document_text
  580. # parse document to nodes
  581. documents = splitter.split_documents([text_doc])
  582. split_documents = []
  583. for document in documents:
  584. if document.page_content is None or not document.page_content.strip():
  585. continue
  586. doc_id = str(uuid.uuid4())
  587. hash = helper.generate_text_hash(document.page_content)
  588. document.metadata['doc_id'] = doc_id
  589. document.metadata['doc_hash'] = hash
  590. split_documents.append(document)
  591. all_documents.extend(split_documents)
  592. return all_documents
  593. def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str:
  594. """
  595. Clean the document text according to the processing rules.
  596. """
  597. if processing_rule.mode == "automatic":
  598. rules = DatasetProcessRule.AUTOMATIC_RULES
  599. else:
  600. rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
  601. if 'pre_processing_rules' in rules:
  602. pre_processing_rules = rules["pre_processing_rules"]
  603. for pre_processing_rule in pre_processing_rules:
  604. if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True:
  605. # Remove extra spaces
  606. pattern = r'\n{3,}'
  607. text = re.sub(pattern, '\n\n', text)
  608. pattern = r'[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}'
  609. text = re.sub(pattern, ' ', text)
  610. elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True:
  611. # Remove email
  612. pattern = r'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)'
  613. text = re.sub(pattern, '', text)
  614. # Remove URL
  615. pattern = r'https?://[^\s]+'
  616. text = re.sub(pattern, '', text)
  617. return text
  618. def format_split_text(self, text):
  619. regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q\d+:|$)"
  620. matches = re.findall(regex, text, re.UNICODE)
  621. return [
  622. {
  623. "question": q,
  624. "answer": re.sub(r"\n\s*", "\n", a.strip())
  625. }
  626. for q, a in matches if q and a
  627. ]
  628. def _build_index(self, dataset: Dataset, dataset_document: DatasetDocument, documents: List[Document]) -> None:
  629. """
  630. Build the index for the document.
  631. """
  632. vector_index = IndexBuilder.get_index(dataset, 'high_quality')
  633. keyword_table_index = IndexBuilder.get_index(dataset, 'economy')
  634. embedding_model_instance = None
  635. if dataset.indexing_technique == 'high_quality':
  636. embedding_model_instance = self.model_manager.get_model_instance(
  637. tenant_id=dataset.tenant_id,
  638. provider=dataset.embedding_model_provider,
  639. model_type=ModelType.TEXT_EMBEDDING,
  640. model=dataset.embedding_model
  641. )
  642. # chunk nodes by chunk size
  643. indexing_start_at = time.perf_counter()
  644. tokens = 0
  645. chunk_size = 100
  646. embedding_model_type_instance = None
  647. if embedding_model_instance:
  648. embedding_model_type_instance = embedding_model_instance.model_type_instance
  649. embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
  650. for i in range(0, len(documents), chunk_size):
  651. # check document is paused
  652. self._check_document_paused_status(dataset_document.id)
  653. chunk_documents = documents[i:i + chunk_size]
  654. if dataset.indexing_technique == 'high_quality' or embedding_model_type_instance:
  655. tokens += sum(
  656. embedding_model_type_instance.get_num_tokens(
  657. embedding_model_instance.model,
  658. embedding_model_instance.credentials,
  659. [document.page_content]
  660. )
  661. for document in chunk_documents
  662. )
  663. # save vector index
  664. if vector_index:
  665. vector_index.add_texts(chunk_documents)
  666. # save keyword index
  667. keyword_table_index.add_texts(chunk_documents)
  668. document_ids = [document.metadata['doc_id'] for document in chunk_documents]
  669. db.session.query(DocumentSegment).filter(
  670. DocumentSegment.document_id == dataset_document.id,
  671. DocumentSegment.index_node_id.in_(document_ids),
  672. DocumentSegment.status == "indexing"
  673. ).update({
  674. DocumentSegment.status: "completed",
  675. DocumentSegment.enabled: True,
  676. DocumentSegment.completed_at: datetime.datetime.utcnow()
  677. })
  678. db.session.commit()
  679. indexing_end_at = time.perf_counter()
  680. # update document status to completed
  681. self._update_document_index_status(
  682. document_id=dataset_document.id,
  683. after_indexing_status="completed",
  684. extra_update_params={
  685. DatasetDocument.tokens: tokens,
  686. DatasetDocument.completed_at: datetime.datetime.utcnow(),
  687. DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
  688. }
  689. )
  690. def _check_document_paused_status(self, document_id: str):
  691. indexing_cache_key = 'document_{}_is_paused'.format(document_id)
  692. result = redis_client.get(indexing_cache_key)
  693. if result:
  694. raise DocumentIsPausedException()
  695. def _update_document_index_status(self, document_id: str, after_indexing_status: str,
  696. extra_update_params: Optional[dict] = None) -> None:
  697. """
  698. Update the document indexing status.
  699. """
  700. count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count()
  701. if count > 0:
  702. raise DocumentIsPausedException()
  703. document = DatasetDocument.query.filter_by(id=document_id).first()
  704. if not document:
  705. raise DocumentIsDeletedPausedException()
  706. update_params = {
  707. DatasetDocument.indexing_status: after_indexing_status
  708. }
  709. if extra_update_params:
  710. update_params.update(extra_update_params)
  711. DatasetDocument.query.filter_by(id=document_id).update(update_params)
  712. db.session.commit()
  713. def _update_segments_by_document(self, dataset_document_id: str, update_params: dict) -> None:
  714. """
  715. Update the document segment by document id.
  716. """
  717. DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params)
  718. db.session.commit()
  719. def batch_add_segments(self, segments: List[DocumentSegment], dataset: Dataset):
  720. """
  721. Batch add segments index processing
  722. """
  723. documents = []
  724. for segment in segments:
  725. document = Document(
  726. page_content=segment.content,
  727. metadata={
  728. "doc_id": segment.index_node_id,
  729. "doc_hash": segment.index_node_hash,
  730. "document_id": segment.document_id,
  731. "dataset_id": segment.dataset_id,
  732. }
  733. )
  734. documents.append(document)
  735. # save vector index
  736. index = IndexBuilder.get_index(dataset, 'high_quality')
  737. if index:
  738. index.add_texts(documents, duplicate_check=True)
  739. # save keyword index
  740. index = IndexBuilder.get_index(dataset, 'economy')
  741. if index:
  742. index.add_texts(documents)
  743. class DocumentIsPausedException(Exception):
  744. pass
  745. class DocumentIsDeletedPausedException(Exception):
  746. pass