retrieval_service.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393
  1. import concurrent.futures
  2. from concurrent.futures import ThreadPoolExecutor
  3. from typing import Optional
  4. from flask import Flask, current_app
  5. from sqlalchemy.orm import load_only
  6. from configs import dify_config
  7. from core.rag.data_post_processor.data_post_processor import DataPostProcessor
  8. from core.rag.datasource.keyword.keyword_factory import Keyword
  9. from core.rag.datasource.vdb.vector_factory import Vector
  10. from core.rag.embedding.retrieval import RetrievalSegments
  11. from core.rag.index_processor.constant.index_type import IndexType
  12. from core.rag.models.document import Document
  13. from core.rag.rerank.rerank_type import RerankMode
  14. from core.rag.retrieval.retrieval_methods import RetrievalMethod
  15. from extensions.ext_database import db
  16. from models.dataset import ChildChunk, Dataset, DocumentSegment
  17. from models.dataset import Document as DatasetDocument
  18. from services.external_knowledge_service import ExternalDatasetService
  19. default_retrieval_model = {
  20. "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
  21. "reranking_enable": False,
  22. "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
  23. "top_k": 2,
  24. "score_threshold_enabled": False,
  25. }
  26. class RetrievalService:
  27. # Cache precompiled regular expressions to avoid repeated compilation
  28. @classmethod
  29. def retrieve(
  30. cls,
  31. retrieval_method: str,
  32. dataset_id: str,
  33. query: str,
  34. top_k: int,
  35. score_threshold: Optional[float] = 0.0,
  36. reranking_model: Optional[dict] = None,
  37. reranking_mode: str = "reranking_model",
  38. weights: Optional[dict] = None,
  39. document_ids_filter: Optional[list[str]] = None,
  40. ):
  41. if not query:
  42. return []
  43. dataset = cls._get_dataset(dataset_id)
  44. if not dataset or dataset.available_document_count == 0 or dataset.available_segment_count == 0:
  45. return []
  46. all_documents: list[Document] = []
  47. exceptions: list[str] = []
  48. # Optimize multithreading with thread pools
  49. with ThreadPoolExecutor(max_workers=dify_config.RETRIEVAL_SERVICE_EXECUTORS) as executor: # type: ignore
  50. futures = []
  51. if retrieval_method == "keyword_search":
  52. futures.append(
  53. executor.submit(
  54. cls.keyword_search,
  55. flask_app=current_app._get_current_object(), # type: ignore
  56. dataset_id=dataset_id,
  57. query=query,
  58. top_k=top_k,
  59. all_documents=all_documents,
  60. exceptions=exceptions,
  61. document_ids_filter=document_ids_filter,
  62. )
  63. )
  64. if RetrievalMethod.is_support_semantic_search(retrieval_method):
  65. futures.append(
  66. executor.submit(
  67. cls.embedding_search,
  68. flask_app=current_app._get_current_object(), # type: ignore
  69. dataset_id=dataset_id,
  70. query=query,
  71. top_k=top_k,
  72. score_threshold=score_threshold,
  73. reranking_model=reranking_model,
  74. all_documents=all_documents,
  75. retrieval_method=retrieval_method,
  76. exceptions=exceptions,
  77. document_ids_filter=document_ids_filter,
  78. )
  79. )
  80. if RetrievalMethod.is_support_fulltext_search(retrieval_method):
  81. futures.append(
  82. executor.submit(
  83. cls.full_text_index_search,
  84. flask_app=current_app._get_current_object(), # type: ignore
  85. dataset_id=dataset_id,
  86. query=query,
  87. top_k=top_k,
  88. score_threshold=score_threshold,
  89. reranking_model=reranking_model,
  90. all_documents=all_documents,
  91. retrieval_method=retrieval_method,
  92. exceptions=exceptions,
  93. )
  94. )
  95. concurrent.futures.wait(futures, timeout=30, return_when=concurrent.futures.ALL_COMPLETED)
  96. if exceptions:
  97. raise ValueError(";\n".join(exceptions))
  98. if retrieval_method == RetrievalMethod.HYBRID_SEARCH.value:
  99. data_post_processor = DataPostProcessor(
  100. str(dataset.tenant_id), reranking_mode, reranking_model, weights, False
  101. )
  102. all_documents = data_post_processor.invoke(
  103. query=query,
  104. documents=all_documents,
  105. score_threshold=score_threshold,
  106. top_n=top_k,
  107. )
  108. return all_documents
  109. @classmethod
  110. def external_retrieve(cls, dataset_id: str, query: str, external_retrieval_model: Optional[dict] = None):
  111. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  112. if not dataset:
  113. return []
  114. all_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
  115. dataset.tenant_id, dataset_id, query, external_retrieval_model or {}
  116. )
  117. return all_documents
  118. @classmethod
  119. def _get_dataset(cls, dataset_id: str) -> Optional[Dataset]:
  120. return db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  121. @classmethod
  122. def keyword_search(
  123. cls,
  124. flask_app: Flask,
  125. dataset_id: str,
  126. query: str,
  127. top_k: int,
  128. all_documents: list,
  129. exceptions: list,
  130. document_ids_filter: Optional[list[str]] = None,
  131. ):
  132. with flask_app.app_context():
  133. try:
  134. dataset = cls._get_dataset(dataset_id)
  135. if not dataset:
  136. raise ValueError("dataset not found")
  137. keyword = Keyword(dataset=dataset)
  138. documents = keyword.search(
  139. cls.escape_query_for_search(query), top_k=top_k, document_ids_filter=document_ids_filter
  140. )
  141. all_documents.extend(documents)
  142. except Exception as e:
  143. exceptions.append(str(e))
  144. @classmethod
  145. def embedding_search(
  146. cls,
  147. flask_app: Flask,
  148. dataset_id: str,
  149. query: str,
  150. top_k: int,
  151. score_threshold: Optional[float],
  152. reranking_model: Optional[dict],
  153. all_documents: list,
  154. retrieval_method: str,
  155. exceptions: list,
  156. document_ids_filter: Optional[list[str]] = None,
  157. ):
  158. with flask_app.app_context():
  159. try:
  160. dataset = cls._get_dataset(dataset_id)
  161. if not dataset:
  162. raise ValueError("dataset not found")
  163. vector = Vector(dataset=dataset)
  164. documents = vector.search_by_vector(
  165. query,
  166. search_type="similarity_score_threshold",
  167. top_k=top_k,
  168. score_threshold=score_threshold,
  169. filter={"group_id": [dataset.id]},
  170. document_ids_filter=document_ids_filter,
  171. )
  172. if documents:
  173. if (
  174. reranking_model
  175. and reranking_model.get("reranking_model_name")
  176. and reranking_model.get("reranking_provider_name")
  177. and retrieval_method == RetrievalMethod.SEMANTIC_SEARCH.value
  178. ):
  179. data_post_processor = DataPostProcessor(
  180. str(dataset.tenant_id), str(RerankMode.RERANKING_MODEL.value), reranking_model, None, False
  181. )
  182. all_documents.extend(
  183. data_post_processor.invoke(
  184. query=query,
  185. documents=documents,
  186. score_threshold=score_threshold,
  187. top_n=len(documents),
  188. )
  189. )
  190. else:
  191. all_documents.extend(documents)
  192. except Exception as e:
  193. exceptions.append(str(e))
  194. @classmethod
  195. def full_text_index_search(
  196. cls,
  197. flask_app: Flask,
  198. dataset_id: str,
  199. query: str,
  200. top_k: int,
  201. score_threshold: Optional[float],
  202. reranking_model: Optional[dict],
  203. all_documents: list,
  204. retrieval_method: str,
  205. exceptions: list,
  206. ):
  207. with flask_app.app_context():
  208. try:
  209. dataset = cls._get_dataset(dataset_id)
  210. if not dataset:
  211. raise ValueError("dataset not found")
  212. vector_processor = Vector(dataset=dataset)
  213. documents = vector_processor.search_by_full_text(cls.escape_query_for_search(query), top_k=top_k)
  214. if documents:
  215. if (
  216. reranking_model
  217. and reranking_model.get("reranking_model_name")
  218. and reranking_model.get("reranking_provider_name")
  219. and retrieval_method == RetrievalMethod.FULL_TEXT_SEARCH.value
  220. ):
  221. data_post_processor = DataPostProcessor(
  222. str(dataset.tenant_id), str(RerankMode.RERANKING_MODEL.value), reranking_model, None, False
  223. )
  224. all_documents.extend(
  225. data_post_processor.invoke(
  226. query=query,
  227. documents=documents,
  228. score_threshold=score_threshold,
  229. top_n=len(documents),
  230. )
  231. )
  232. else:
  233. all_documents.extend(documents)
  234. except Exception as e:
  235. exceptions.append(str(e))
  236. @staticmethod
  237. def escape_query_for_search(query: str) -> str:
  238. return query.replace('"', '\\"')
  239. @classmethod
  240. def format_retrieval_documents(cls, documents: list[Document]) -> list[RetrievalSegments]:
  241. """Format retrieval documents with optimized batch processing"""
  242. if not documents:
  243. return []
  244. try:
  245. # Collect document IDs
  246. document_ids = {doc.metadata.get("document_id") for doc in documents if "document_id" in doc.metadata}
  247. if not document_ids:
  248. return []
  249. # Batch query dataset documents
  250. dataset_documents = {
  251. doc.id: doc
  252. for doc in db.session.query(DatasetDocument)
  253. .filter(DatasetDocument.id.in_(document_ids))
  254. .options(load_only(DatasetDocument.id, DatasetDocument.doc_form, DatasetDocument.dataset_id))
  255. .all()
  256. }
  257. records = []
  258. include_segment_ids = set()
  259. segment_child_map = {}
  260. # Process documents
  261. for document in documents:
  262. document_id = document.metadata.get("document_id")
  263. if document_id not in dataset_documents:
  264. continue
  265. dataset_document = dataset_documents[document_id]
  266. if not dataset_document:
  267. continue
  268. if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
  269. # Handle parent-child documents
  270. child_index_node_id = document.metadata.get("doc_id")
  271. child_chunk = (
  272. db.session.query(ChildChunk).filter(ChildChunk.index_node_id == child_index_node_id).first()
  273. )
  274. if not child_chunk:
  275. continue
  276. segment = (
  277. db.session.query(DocumentSegment)
  278. .filter(
  279. DocumentSegment.dataset_id == dataset_document.dataset_id,
  280. DocumentSegment.enabled == True,
  281. DocumentSegment.status == "completed",
  282. DocumentSegment.id == child_chunk.segment_id,
  283. )
  284. .options(
  285. load_only(
  286. DocumentSegment.id,
  287. DocumentSegment.content,
  288. DocumentSegment.answer,
  289. )
  290. )
  291. .first()
  292. )
  293. if not segment:
  294. continue
  295. if segment.id not in include_segment_ids:
  296. include_segment_ids.add(segment.id)
  297. child_chunk_detail = {
  298. "id": child_chunk.id,
  299. "content": child_chunk.content,
  300. "position": child_chunk.position,
  301. "score": document.metadata.get("score", 0.0),
  302. }
  303. map_detail = {
  304. "max_score": document.metadata.get("score", 0.0),
  305. "child_chunks": [child_chunk_detail],
  306. }
  307. segment_child_map[segment.id] = map_detail
  308. record = {
  309. "segment": segment,
  310. }
  311. records.append(record)
  312. else:
  313. child_chunk_detail = {
  314. "id": child_chunk.id,
  315. "content": child_chunk.content,
  316. "position": child_chunk.position,
  317. "score": document.metadata.get("score", 0.0),
  318. }
  319. segment_child_map[segment.id]["child_chunks"].append(child_chunk_detail)
  320. segment_child_map[segment.id]["max_score"] = max(
  321. segment_child_map[segment.id]["max_score"], document.metadata.get("score", 0.0)
  322. )
  323. else:
  324. # Handle normal documents
  325. index_node_id = document.metadata.get("doc_id")
  326. if not index_node_id:
  327. continue
  328. segment = (
  329. db.session.query(DocumentSegment)
  330. .filter(
  331. DocumentSegment.dataset_id == dataset_document.dataset_id,
  332. DocumentSegment.enabled == True,
  333. DocumentSegment.status == "completed",
  334. DocumentSegment.index_node_id == index_node_id,
  335. )
  336. .first()
  337. )
  338. if not segment:
  339. continue
  340. include_segment_ids.add(segment.id)
  341. record = {
  342. "segment": segment,
  343. "score": document.metadata.get("score"), # type: ignore
  344. }
  345. records.append(record)
  346. # Add child chunks information to records
  347. for record in records:
  348. if record["segment"].id in segment_child_map:
  349. record["child_chunks"] = segment_child_map[record["segment"].id].get("child_chunks") # type: ignore
  350. record["score"] = segment_child_map[record["segment"].id]["max_score"]
  351. return [RetrievalSegments(**record) for record in records]
  352. except Exception as e:
  353. db.session.rollback()
  354. raise e