dataset_service.py 96 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115
  1. import datetime
  2. import json
  3. import logging
  4. import random
  5. import time
  6. import uuid
  7. from typing import Any, Optional
  8. from flask_login import current_user # type: ignore
  9. from sqlalchemy import func
  10. from werkzeug.exceptions import NotFound
  11. from configs import dify_config
  12. from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
  13. from core.model_manager import ModelManager
  14. from core.model_runtime.entities.model_entities import ModelType
  15. from core.rag.index_processor.constant.index_type import IndexType
  16. from core.rag.retrieval.retrieval_methods import RetrievalMethod
  17. from events.dataset_event import dataset_was_deleted
  18. from events.document_event import document_was_deleted
  19. from extensions.ext_database import db
  20. from extensions.ext_redis import redis_client
  21. from libs import helper
  22. from models.account import Account, TenantAccountRole
  23. from models.dataset import (
  24. AppDatasetJoin,
  25. ChildChunk,
  26. Dataset,
  27. DatasetAutoDisableLog,
  28. DatasetCollectionBinding,
  29. DatasetPermission,
  30. DatasetPermissionEnum,
  31. DatasetProcessRule,
  32. DatasetQuery,
  33. Document,
  34. DocumentSegment,
  35. ExternalKnowledgeBindings,
  36. )
  37. from models.model import UploadFile
  38. from models.source import DataSourceOauthBinding
  39. from services.entities.knowledge_entities.knowledge_entities import (
  40. ChildChunkUpdateArgs,
  41. KnowledgeConfig,
  42. RerankingModel,
  43. RetrievalModel,
  44. SegmentUpdateArgs,
  45. )
  46. from services.errors.account import InvalidActionError, NoPermissionError
  47. from services.errors.chunk import ChildChunkDeleteIndexError, ChildChunkIndexingError
  48. from services.errors.dataset import DatasetNameDuplicateError
  49. from services.errors.document import DocumentIndexingError
  50. from services.errors.file import FileNotExistsError
  51. from services.external_knowledge_service import ExternalDatasetService
  52. from services.feature_service import FeatureModel, FeatureService
  53. from services.tag_service import TagService
  54. from services.vector_service import VectorService
  55. from tasks.batch_clean_document_task import batch_clean_document_task
  56. from tasks.clean_notion_document_task import clean_notion_document_task
  57. from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
  58. from tasks.delete_segment_from_index_task import delete_segment_from_index_task
  59. from tasks.disable_segment_from_index_task import disable_segment_from_index_task
  60. from tasks.disable_segments_from_index_task import disable_segments_from_index_task
  61. from tasks.document_indexing_task import document_indexing_task
  62. from tasks.document_indexing_update_task import document_indexing_update_task
  63. from tasks.duplicate_document_indexing_task import duplicate_document_indexing_task
  64. from tasks.enable_segments_to_index_task import enable_segments_to_index_task
  65. from tasks.recover_document_indexing_task import recover_document_indexing_task
  66. from tasks.retry_document_indexing_task import retry_document_indexing_task
  67. from tasks.sync_website_document_indexing_task import sync_website_document_indexing_task
  68. class DatasetService:
  69. @staticmethod
  70. def get_datasets(page, per_page, tenant_id=None, user=None, search=None, tag_ids=None):
  71. query = Dataset.query.filter(Dataset.tenant_id == tenant_id).order_by(Dataset.created_at.desc())
  72. if user:
  73. # get permitted dataset ids
  74. dataset_permission = DatasetPermission.query.filter_by(account_id=user.id, tenant_id=tenant_id).all()
  75. permitted_dataset_ids = {dp.dataset_id for dp in dataset_permission} if dataset_permission else None
  76. if user.current_role == TenantAccountRole.DATASET_OPERATOR:
  77. # only show datasets that the user has permission to access
  78. if permitted_dataset_ids:
  79. query = query.filter(Dataset.id.in_(permitted_dataset_ids))
  80. else:
  81. return [], 0
  82. else:
  83. if user.current_role not in (TenantAccountRole.OWNER, TenantAccountRole.ADMIN):
  84. # show all datasets that the user has permission to access
  85. if permitted_dataset_ids:
  86. query = query.filter(
  87. db.or_(
  88. Dataset.permission == DatasetPermissionEnum.ALL_TEAM,
  89. db.and_(
  90. Dataset.permission == DatasetPermissionEnum.ONLY_ME, Dataset.created_by == user.id
  91. ),
  92. db.and_(
  93. Dataset.permission == DatasetPermissionEnum.PARTIAL_TEAM,
  94. Dataset.id.in_(permitted_dataset_ids),
  95. ),
  96. )
  97. )
  98. else:
  99. query = query.filter(
  100. db.or_(
  101. Dataset.permission == DatasetPermissionEnum.ALL_TEAM,
  102. db.and_(
  103. Dataset.permission == DatasetPermissionEnum.ONLY_ME, Dataset.created_by == user.id
  104. ),
  105. )
  106. )
  107. else:
  108. # if no user, only show datasets that are shared with all team members
  109. query = query.filter(Dataset.permission == DatasetPermissionEnum.ALL_TEAM)
  110. if search:
  111. query = query.filter(Dataset.name.ilike(f"%{search}%"))
  112. if tag_ids:
  113. target_ids = TagService.get_target_ids_by_tag_ids("knowledge", tenant_id, tag_ids)
  114. if target_ids:
  115. query = query.filter(Dataset.id.in_(target_ids))
  116. else:
  117. return [], 0
  118. datasets = query.paginate(page=page, per_page=per_page, max_per_page=100, error_out=False)
  119. return datasets.items, datasets.total
  120. @staticmethod
  121. def get_process_rules(dataset_id):
  122. # get the latest process rule
  123. dataset_process_rule = (
  124. db.session.query(DatasetProcessRule)
  125. .filter(DatasetProcessRule.dataset_id == dataset_id)
  126. .order_by(DatasetProcessRule.created_at.desc())
  127. .limit(1)
  128. .one_or_none()
  129. )
  130. if dataset_process_rule:
  131. mode = dataset_process_rule.mode
  132. rules = dataset_process_rule.rules_dict
  133. else:
  134. mode = DocumentService.DEFAULT_RULES["mode"]
  135. rules = DocumentService.DEFAULT_RULES["rules"]
  136. return {"mode": mode, "rules": rules}
  137. @staticmethod
  138. def get_datasets_by_ids(ids, tenant_id):
  139. datasets = Dataset.query.filter(Dataset.id.in_(ids), Dataset.tenant_id == tenant_id).paginate(
  140. page=1, per_page=len(ids), max_per_page=len(ids), error_out=False
  141. )
  142. return datasets.items, datasets.total
  143. @staticmethod
  144. def create_empty_dataset(
  145. tenant_id: str,
  146. name: str,
  147. description: Optional[str],
  148. indexing_technique: Optional[str],
  149. account: Account,
  150. permission: Optional[str] = None,
  151. provider: str = "vendor",
  152. external_knowledge_api_id: Optional[str] = None,
  153. external_knowledge_id: Optional[str] = None,
  154. ):
  155. # check if dataset name already exists
  156. if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
  157. raise DatasetNameDuplicateError(f"Dataset with name {name} already exists.")
  158. embedding_model = None
  159. if indexing_technique == "high_quality":
  160. model_manager = ModelManager()
  161. embedding_model = model_manager.get_default_model_instance(
  162. tenant_id=tenant_id, model_type=ModelType.TEXT_EMBEDDING
  163. )
  164. dataset = Dataset(name=name, indexing_technique=indexing_technique)
  165. # dataset = Dataset(name=name, provider=provider, config=config)
  166. dataset.description = description
  167. dataset.created_by = account.id
  168. dataset.updated_by = account.id
  169. dataset.tenant_id = tenant_id
  170. dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
  171. dataset.embedding_model = embedding_model.model if embedding_model else None
  172. dataset.permission = permission or DatasetPermissionEnum.ONLY_ME
  173. dataset.provider = provider
  174. db.session.add(dataset)
  175. db.session.flush()
  176. if provider == "external" and external_knowledge_api_id:
  177. external_knowledge_api = ExternalDatasetService.get_external_knowledge_api(external_knowledge_api_id)
  178. if not external_knowledge_api:
  179. raise ValueError("External API template not found.")
  180. external_knowledge_binding = ExternalKnowledgeBindings(
  181. tenant_id=tenant_id,
  182. dataset_id=dataset.id,
  183. external_knowledge_api_id=external_knowledge_api_id,
  184. external_knowledge_id=external_knowledge_id,
  185. created_by=account.id,
  186. )
  187. db.session.add(external_knowledge_binding)
  188. db.session.commit()
  189. return dataset
  190. @staticmethod
  191. def get_dataset(dataset_id) -> Optional[Dataset]:
  192. dataset: Optional[Dataset] = Dataset.query.filter_by(id=dataset_id).first()
  193. return dataset
  194. @staticmethod
  195. def check_dataset_model_setting(dataset):
  196. if dataset.indexing_technique == "high_quality":
  197. try:
  198. model_manager = ModelManager()
  199. model_manager.get_model_instance(
  200. tenant_id=dataset.tenant_id,
  201. provider=dataset.embedding_model_provider,
  202. model_type=ModelType.TEXT_EMBEDDING,
  203. model=dataset.embedding_model,
  204. )
  205. except LLMBadRequestError:
  206. raise ValueError(
  207. "No Embedding Model available. Please configure a valid provider "
  208. "in the Settings -> Model Provider."
  209. )
  210. except ProviderTokenNotInitError as ex:
  211. raise ValueError(f"The dataset in unavailable, due to: {ex.description}")
  212. @staticmethod
  213. def check_embedding_model_setting(tenant_id: str, embedding_model_provider: str, embedding_model: str):
  214. try:
  215. model_manager = ModelManager()
  216. model_manager.get_model_instance(
  217. tenant_id=tenant_id,
  218. provider=embedding_model_provider,
  219. model_type=ModelType.TEXT_EMBEDDING,
  220. model=embedding_model,
  221. )
  222. except LLMBadRequestError:
  223. raise ValueError(
  224. "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
  225. )
  226. except ProviderTokenNotInitError as ex:
  227. raise ValueError(f"The dataset in unavailable, due to: {ex.description}")
  228. @staticmethod
  229. def update_dataset(dataset_id, data, user):
  230. dataset = DatasetService.get_dataset(dataset_id)
  231. if not dataset:
  232. raise ValueError("Dataset not found")
  233. DatasetService.check_dataset_permission(dataset, user)
  234. if dataset.provider == "external":
  235. external_retrieval_model = data.get("external_retrieval_model", None)
  236. if external_retrieval_model:
  237. dataset.retrieval_model = external_retrieval_model
  238. dataset.name = data.get("name", dataset.name)
  239. dataset.description = data.get("description", "")
  240. permission = data.get("permission")
  241. if permission:
  242. dataset.permission = permission
  243. external_knowledge_id = data.get("external_knowledge_id", None)
  244. db.session.add(dataset)
  245. if not external_knowledge_id:
  246. raise ValueError("External knowledge id is required.")
  247. external_knowledge_api_id = data.get("external_knowledge_api_id", None)
  248. if not external_knowledge_api_id:
  249. raise ValueError("External knowledge api id is required.")
  250. external_knowledge_binding = ExternalKnowledgeBindings.query.filter_by(dataset_id=dataset_id).first()
  251. if (
  252. external_knowledge_binding.external_knowledge_id != external_knowledge_id
  253. or external_knowledge_binding.external_knowledge_api_id != external_knowledge_api_id
  254. ):
  255. external_knowledge_binding.external_knowledge_id = external_knowledge_id
  256. external_knowledge_binding.external_knowledge_api_id = external_knowledge_api_id
  257. db.session.add(external_knowledge_binding)
  258. db.session.commit()
  259. else:
  260. data.pop("partial_member_list", None)
  261. data.pop("external_knowledge_api_id", None)
  262. data.pop("external_knowledge_id", None)
  263. data.pop("external_retrieval_model", None)
  264. filtered_data = {k: v for k, v in data.items() if v is not None or k == "description"}
  265. action = None
  266. if dataset.indexing_technique != data["indexing_technique"]:
  267. # if update indexing_technique
  268. if data["indexing_technique"] == "economy":
  269. action = "remove"
  270. filtered_data["embedding_model"] = None
  271. filtered_data["embedding_model_provider"] = None
  272. filtered_data["collection_binding_id"] = None
  273. elif data["indexing_technique"] == "high_quality":
  274. action = "add"
  275. # get embedding model setting
  276. try:
  277. model_manager = ModelManager()
  278. embedding_model = model_manager.get_model_instance(
  279. tenant_id=current_user.current_tenant_id,
  280. provider=data["embedding_model_provider"],
  281. model_type=ModelType.TEXT_EMBEDDING,
  282. model=data["embedding_model"],
  283. )
  284. filtered_data["embedding_model"] = embedding_model.model
  285. filtered_data["embedding_model_provider"] = embedding_model.provider
  286. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  287. embedding_model.provider, embedding_model.model
  288. )
  289. filtered_data["collection_binding_id"] = dataset_collection_binding.id
  290. except LLMBadRequestError:
  291. raise ValueError(
  292. "No Embedding Model available. Please configure a valid provider "
  293. "in the Settings -> Model Provider."
  294. )
  295. except ProviderTokenNotInitError as ex:
  296. raise ValueError(ex.description)
  297. else:
  298. if (
  299. data["embedding_model_provider"] != dataset.embedding_model_provider
  300. or data["embedding_model"] != dataset.embedding_model
  301. ):
  302. action = "update"
  303. try:
  304. model_manager = ModelManager()
  305. embedding_model = model_manager.get_model_instance(
  306. tenant_id=current_user.current_tenant_id,
  307. provider=data["embedding_model_provider"],
  308. model_type=ModelType.TEXT_EMBEDDING,
  309. model=data["embedding_model"],
  310. )
  311. filtered_data["embedding_model"] = embedding_model.model
  312. filtered_data["embedding_model_provider"] = embedding_model.provider
  313. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  314. embedding_model.provider, embedding_model.model
  315. )
  316. filtered_data["collection_binding_id"] = dataset_collection_binding.id
  317. except LLMBadRequestError:
  318. raise ValueError(
  319. "No Embedding Model available. Please configure a valid provider "
  320. "in the Settings -> Model Provider."
  321. )
  322. except ProviderTokenNotInitError as ex:
  323. raise ValueError(ex.description)
  324. filtered_data["updated_by"] = user.id
  325. filtered_data["updated_at"] = datetime.datetime.now()
  326. # update Retrieval model
  327. filtered_data["retrieval_model"] = data["retrieval_model"]
  328. dataset.query.filter_by(id=dataset_id).update(filtered_data)
  329. db.session.commit()
  330. if action:
  331. deal_dataset_vector_index_task.delay(dataset_id, action)
  332. return dataset
  333. @staticmethod
  334. def delete_dataset(dataset_id, user):
  335. dataset = DatasetService.get_dataset(dataset_id)
  336. if dataset is None:
  337. return False
  338. DatasetService.check_dataset_permission(dataset, user)
  339. dataset_was_deleted.send(dataset)
  340. db.session.delete(dataset)
  341. db.session.commit()
  342. return True
  343. @staticmethod
  344. def dataset_use_check(dataset_id) -> bool:
  345. count = AppDatasetJoin.query.filter_by(dataset_id=dataset_id).count()
  346. if count > 0:
  347. return True
  348. return False
  349. @staticmethod
  350. def check_dataset_permission(dataset, user):
  351. if dataset.tenant_id != user.current_tenant_id:
  352. logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")
  353. raise NoPermissionError("You do not have permission to access this dataset.")
  354. if user.current_role not in (TenantAccountRole.OWNER, TenantAccountRole.ADMIN):
  355. if dataset.permission == DatasetPermissionEnum.ONLY_ME and dataset.created_by != user.id:
  356. logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")
  357. raise NoPermissionError("You do not have permission to access this dataset.")
  358. if dataset.permission == "partial_members":
  359. user_permission = DatasetPermission.query.filter_by(dataset_id=dataset.id, account_id=user.id).first()
  360. if (
  361. not user_permission
  362. and dataset.tenant_id != user.current_tenant_id
  363. and dataset.created_by != user.id
  364. ):
  365. logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")
  366. raise NoPermissionError("You do not have permission to access this dataset.")
  367. @staticmethod
  368. def check_dataset_operator_permission(user: Optional[Account] = None, dataset: Optional[Dataset] = None):
  369. if not dataset:
  370. raise ValueError("Dataset not found")
  371. if not user:
  372. raise ValueError("User not found")
  373. if user.current_role not in (TenantAccountRole.OWNER, TenantAccountRole.ADMIN):
  374. if dataset.permission == DatasetPermissionEnum.ONLY_ME:
  375. if dataset.created_by != user.id:
  376. raise NoPermissionError("You do not have permission to access this dataset.")
  377. elif dataset.permission == DatasetPermissionEnum.PARTIAL_TEAM:
  378. if not any(
  379. dp.dataset_id == dataset.id for dp in DatasetPermission.query.filter_by(account_id=user.id).all()
  380. ):
  381. raise NoPermissionError("You do not have permission to access this dataset.")
  382. @staticmethod
  383. def get_dataset_queries(dataset_id: str, page: int, per_page: int):
  384. dataset_queries = (
  385. DatasetQuery.query.filter_by(dataset_id=dataset_id)
  386. .order_by(db.desc(DatasetQuery.created_at))
  387. .paginate(page=page, per_page=per_page, max_per_page=100, error_out=False)
  388. )
  389. return dataset_queries.items, dataset_queries.total
  390. @staticmethod
  391. def get_related_apps(dataset_id: str):
  392. return (
  393. AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id)
  394. .order_by(db.desc(AppDatasetJoin.created_at))
  395. .all()
  396. )
  397. @staticmethod
  398. def get_dataset_auto_disable_logs(dataset_id: str) -> dict:
  399. features = FeatureService.get_features(current_user.current_tenant_id)
  400. if not features.billing.enabled or features.billing.subscription.plan == "sandbox":
  401. return {
  402. "document_ids": [],
  403. "count": 0,
  404. }
  405. # get recent 30 days auto disable logs
  406. start_date = datetime.datetime.now() - datetime.timedelta(days=30)
  407. dataset_auto_disable_logs = DatasetAutoDisableLog.query.filter(
  408. DatasetAutoDisableLog.dataset_id == dataset_id,
  409. DatasetAutoDisableLog.created_at >= start_date,
  410. ).all()
  411. if dataset_auto_disable_logs:
  412. return {
  413. "document_ids": [log.document_id for log in dataset_auto_disable_logs],
  414. "count": len(dataset_auto_disable_logs),
  415. }
  416. return {
  417. "document_ids": [],
  418. "count": 0,
  419. }
  420. class DocumentService:
  421. DEFAULT_RULES: dict[str, Any] = {
  422. "mode": "custom",
  423. "rules": {
  424. "pre_processing_rules": [
  425. {"id": "remove_extra_spaces", "enabled": True},
  426. {"id": "remove_urls_emails", "enabled": False},
  427. ],
  428. "segmentation": {"delimiter": "\n", "max_tokens": 500, "chunk_overlap": 50},
  429. },
  430. "limits": {
  431. "indexing_max_segmentation_tokens_length": dify_config.INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH,
  432. },
  433. }
  434. DOCUMENT_METADATA_SCHEMA: dict[str, Any] = {
  435. "book": {
  436. "title": str,
  437. "language": str,
  438. "author": str,
  439. "publisher": str,
  440. "publication_date": str,
  441. "isbn": str,
  442. "category": str,
  443. },
  444. "web_page": {
  445. "title": str,
  446. "url": str,
  447. "language": str,
  448. "publish_date": str,
  449. "author/publisher": str,
  450. "topic/keywords": str,
  451. "description": str,
  452. },
  453. "paper": {
  454. "title": str,
  455. "language": str,
  456. "author": str,
  457. "publish_date": str,
  458. "journal/conference_name": str,
  459. "volume/issue/page_numbers": str,
  460. "doi": str,
  461. "topic/keywords": str,
  462. "abstract": str,
  463. },
  464. "social_media_post": {
  465. "platform": str,
  466. "author/username": str,
  467. "publish_date": str,
  468. "post_url": str,
  469. "topic/tags": str,
  470. },
  471. "wikipedia_entry": {
  472. "title": str,
  473. "language": str,
  474. "web_page_url": str,
  475. "last_edit_date": str,
  476. "editor/contributor": str,
  477. "summary/introduction": str,
  478. },
  479. "personal_document": {
  480. "title": str,
  481. "author": str,
  482. "creation_date": str,
  483. "last_modified_date": str,
  484. "document_type": str,
  485. "tags/category": str,
  486. },
  487. "business_document": {
  488. "title": str,
  489. "author": str,
  490. "creation_date": str,
  491. "last_modified_date": str,
  492. "document_type": str,
  493. "department/team": str,
  494. },
  495. "im_chat_log": {
  496. "chat_platform": str,
  497. "chat_participants/group_name": str,
  498. "start_date": str,
  499. "end_date": str,
  500. "summary": str,
  501. },
  502. "synced_from_notion": {
  503. "title": str,
  504. "language": str,
  505. "author/creator": str,
  506. "creation_date": str,
  507. "last_modified_date": str,
  508. "notion_page_link": str,
  509. "category/tags": str,
  510. "description": str,
  511. },
  512. "synced_from_github": {
  513. "repository_name": str,
  514. "repository_description": str,
  515. "repository_owner/organization": str,
  516. "code_filename": str,
  517. "code_file_path": str,
  518. "programming_language": str,
  519. "github_link": str,
  520. "open_source_license": str,
  521. "commit_date": str,
  522. "commit_author": str,
  523. },
  524. "others": dict,
  525. }
  526. @staticmethod
  527. def get_document(dataset_id: str, document_id: Optional[str] = None) -> Optional[Document]:
  528. if document_id:
  529. document = (
  530. db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
  531. )
  532. return document
  533. else:
  534. return None
  535. @staticmethod
  536. def get_document_by_id(document_id: str) -> Optional[Document]:
  537. document = db.session.query(Document).filter(Document.id == document_id).first()
  538. return document
  539. @staticmethod
  540. def get_document_by_dataset_id(dataset_id: str) -> list[Document]:
  541. documents = db.session.query(Document).filter(Document.dataset_id == dataset_id, Document.enabled == True).all()
  542. return documents
  543. @staticmethod
  544. def get_error_documents_by_dataset_id(dataset_id: str) -> list[Document]:
  545. documents = (
  546. db.session.query(Document)
  547. .filter(Document.dataset_id == dataset_id, Document.indexing_status.in_(["error", "paused"]))
  548. .all()
  549. )
  550. return documents
  551. @staticmethod
  552. def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:
  553. documents = (
  554. db.session.query(Document)
  555. .filter(
  556. Document.batch == batch,
  557. Document.dataset_id == dataset_id,
  558. Document.tenant_id == current_user.current_tenant_id,
  559. )
  560. .all()
  561. )
  562. return documents
  563. @staticmethod
  564. def get_document_file_detail(file_id: str):
  565. file_detail = db.session.query(UploadFile).filter(UploadFile.id == file_id).one_or_none()
  566. return file_detail
  567. @staticmethod
  568. def check_archived(document):
  569. if document.archived:
  570. return True
  571. else:
  572. return False
  573. @staticmethod
  574. def delete_document(document):
  575. # trigger document_was_deleted signal
  576. file_id = None
  577. if document.data_source_type == "upload_file":
  578. if document.data_source_info:
  579. data_source_info = document.data_source_info_dict
  580. if data_source_info and "upload_file_id" in data_source_info:
  581. file_id = data_source_info["upload_file_id"]
  582. document_was_deleted.send(
  583. document.id, dataset_id=document.dataset_id, doc_form=document.doc_form, file_id=file_id
  584. )
  585. db.session.delete(document)
  586. db.session.commit()
  587. @staticmethod
  588. def delete_documents(dataset: Dataset, document_ids: list[str]):
  589. documents = db.session.query(Document).filter(Document.id.in_(document_ids)).all()
  590. file_ids = [
  591. document.data_source_info_dict["upload_file_id"]
  592. for document in documents
  593. if document.data_source_type == "upload_file"
  594. ]
  595. batch_clean_document_task.delay(document_ids, dataset.id, dataset.doc_form, file_ids)
  596. for document in documents:
  597. db.session.delete(document)
  598. db.session.commit()
  599. @staticmethod
  600. def rename_document(dataset_id: str, document_id: str, name: str) -> Document:
  601. dataset = DatasetService.get_dataset(dataset_id)
  602. if not dataset:
  603. raise ValueError("Dataset not found.")
  604. document = DocumentService.get_document(dataset_id, document_id)
  605. if not document:
  606. raise ValueError("Document not found.")
  607. if document.tenant_id != current_user.current_tenant_id:
  608. raise ValueError("No permission.")
  609. document.name = name
  610. db.session.add(document)
  611. db.session.commit()
  612. return document
  613. @staticmethod
  614. def pause_document(document):
  615. if document.indexing_status not in {"waiting", "parsing", "cleaning", "splitting", "indexing"}:
  616. raise DocumentIndexingError()
  617. # update document to be paused
  618. document.is_paused = True
  619. document.paused_by = current_user.id
  620. document.paused_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
  621. db.session.add(document)
  622. db.session.commit()
  623. # set document paused flag
  624. indexing_cache_key = "document_{}_is_paused".format(document.id)
  625. redis_client.setnx(indexing_cache_key, "True")
  626. @staticmethod
  627. def recover_document(document):
  628. if not document.is_paused:
  629. raise DocumentIndexingError()
  630. # update document to be recover
  631. document.is_paused = False
  632. document.paused_by = None
  633. document.paused_at = None
  634. db.session.add(document)
  635. db.session.commit()
  636. # delete paused flag
  637. indexing_cache_key = "document_{}_is_paused".format(document.id)
  638. redis_client.delete(indexing_cache_key)
  639. # trigger async task
  640. recover_document_indexing_task.delay(document.dataset_id, document.id)
  641. @staticmethod
  642. def retry_document(dataset_id: str, documents: list[Document]):
  643. for document in documents:
  644. # add retry flag
  645. retry_indexing_cache_key = "document_{}_is_retried".format(document.id)
  646. cache_result = redis_client.get(retry_indexing_cache_key)
  647. if cache_result is not None:
  648. raise ValueError("Document is being retried, please try again later")
  649. # retry document indexing
  650. document.indexing_status = "waiting"
  651. db.session.add(document)
  652. db.session.commit()
  653. redis_client.setex(retry_indexing_cache_key, 600, 1)
  654. # trigger async task
  655. document_ids = [document.id for document in documents]
  656. retry_document_indexing_task.delay(dataset_id, document_ids)
  657. @staticmethod
  658. def sync_website_document(dataset_id: str, document: Document):
  659. # add sync flag
  660. sync_indexing_cache_key = "document_{}_is_sync".format(document.id)
  661. cache_result = redis_client.get(sync_indexing_cache_key)
  662. if cache_result is not None:
  663. raise ValueError("Document is being synced, please try again later")
  664. # sync document indexing
  665. document.indexing_status = "waiting"
  666. data_source_info = document.data_source_info_dict
  667. data_source_info["mode"] = "scrape"
  668. document.data_source_info = json.dumps(data_source_info, ensure_ascii=False)
  669. db.session.add(document)
  670. db.session.commit()
  671. redis_client.setex(sync_indexing_cache_key, 600, 1)
  672. sync_website_document_indexing_task.delay(dataset_id, document.id)
  673. @staticmethod
  674. def get_documents_position(dataset_id):
  675. document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
  676. if document:
  677. return document.position + 1
  678. else:
  679. return 1
  680. @staticmethod
  681. def save_document_with_dataset_id(
  682. dataset: Dataset,
  683. knowledge_config: KnowledgeConfig,
  684. account: Account | Any,
  685. dataset_process_rule: Optional[DatasetProcessRule] = None,
  686. created_from: str = "web",
  687. ):
  688. # check document limit
  689. features = FeatureService.get_features(current_user.current_tenant_id)
  690. if features.billing.enabled:
  691. if not knowledge_config.original_document_id:
  692. count = 0
  693. if knowledge_config.data_source:
  694. if knowledge_config.data_source.info_list.data_source_type == "upload_file":
  695. upload_file_list = knowledge_config.data_source.info_list.file_info_list.file_ids # type: ignore
  696. count = len(upload_file_list)
  697. elif knowledge_config.data_source.info_list.data_source_type == "notion_import":
  698. notion_info_list = knowledge_config.data_source.info_list.notion_info_list
  699. for notion_info in notion_info_list: # type: ignore
  700. count = count + len(notion_info.pages)
  701. elif knowledge_config.data_source.info_list.data_source_type == "website_crawl":
  702. website_info = knowledge_config.data_source.info_list.website_info_list
  703. count = len(website_info.urls) # type: ignore
  704. batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
  705. if count > batch_upload_limit:
  706. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  707. DocumentService.check_documents_upload_quota(count, features)
  708. # if dataset is empty, update dataset data_source_type
  709. if not dataset.data_source_type:
  710. dataset.data_source_type = knowledge_config.data_source.info_list.data_source_type # type: ignore
  711. if not dataset.indexing_technique:
  712. if knowledge_config.indexing_technique not in Dataset.INDEXING_TECHNIQUE_LIST:
  713. raise ValueError("Indexing technique is invalid")
  714. dataset.indexing_technique = knowledge_config.indexing_technique
  715. if knowledge_config.indexing_technique == "high_quality":
  716. model_manager = ModelManager()
  717. embedding_model = model_manager.get_default_model_instance(
  718. tenant_id=current_user.current_tenant_id, model_type=ModelType.TEXT_EMBEDDING
  719. )
  720. dataset.embedding_model = embedding_model.model
  721. dataset.embedding_model_provider = embedding_model.provider
  722. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  723. embedding_model.provider, embedding_model.model
  724. )
  725. dataset.collection_binding_id = dataset_collection_binding.id
  726. if not dataset.retrieval_model:
  727. default_retrieval_model = {
  728. "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
  729. "reranking_enable": False,
  730. "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
  731. "top_k": 2,
  732. "score_threshold_enabled": False,
  733. }
  734. dataset.retrieval_model = knowledge_config.retrieval_model.model_dump() or default_retrieval_model # type: ignore
  735. documents = []
  736. if knowledge_config.original_document_id:
  737. document = DocumentService.update_document_with_dataset_id(dataset, knowledge_config, account)
  738. documents.append(document)
  739. batch = document.batch
  740. else:
  741. batch = time.strftime("%Y%m%d%H%M%S") + str(random.randint(100000, 999999))
  742. # save process rule
  743. if not dataset_process_rule:
  744. process_rule = knowledge_config.process_rule
  745. if process_rule:
  746. if process_rule.mode in ("custom", "hierarchical"):
  747. dataset_process_rule = DatasetProcessRule(
  748. dataset_id=dataset.id,
  749. mode=process_rule.mode,
  750. rules=process_rule.rules.model_dump_json() if process_rule.rules else None,
  751. created_by=account.id,
  752. )
  753. elif process_rule.mode == "automatic":
  754. dataset_process_rule = DatasetProcessRule(
  755. dataset_id=dataset.id,
  756. mode=process_rule.mode,
  757. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  758. created_by=account.id,
  759. )
  760. else:
  761. logging.warn(
  762. f"Invalid process rule mode: {process_rule.mode}, can not find dataset process rule"
  763. )
  764. return
  765. db.session.add(dataset_process_rule)
  766. db.session.commit()
  767. lock_name = "add_document_lock_dataset_id_{}".format(dataset.id)
  768. with redis_client.lock(lock_name, timeout=600):
  769. position = DocumentService.get_documents_position(dataset.id)
  770. document_ids = []
  771. duplicate_document_ids = []
  772. if knowledge_config.data_source.info_list.data_source_type == "upload_file":
  773. upload_file_list = knowledge_config.data_source.info_list.file_info_list.file_ids # type: ignore
  774. for file_id in upload_file_list:
  775. file = (
  776. db.session.query(UploadFile)
  777. .filter(UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id)
  778. .first()
  779. )
  780. # raise error if file not found
  781. if not file:
  782. raise FileNotExistsError()
  783. file_name = file.name
  784. data_source_info = {
  785. "upload_file_id": file_id,
  786. }
  787. # check duplicate
  788. if knowledge_config.duplicate:
  789. document = Document.query.filter_by(
  790. dataset_id=dataset.id,
  791. tenant_id=current_user.current_tenant_id,
  792. data_source_type="upload_file",
  793. enabled=True,
  794. name=file_name,
  795. ).first()
  796. if document:
  797. document.dataset_process_rule_id = dataset_process_rule.id # type: ignore
  798. document.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  799. document.created_from = created_from
  800. document.doc_form = knowledge_config.doc_form
  801. document.doc_language = knowledge_config.doc_language
  802. document.data_source_info = json.dumps(data_source_info)
  803. document.batch = batch
  804. document.indexing_status = "waiting"
  805. db.session.add(document)
  806. documents.append(document)
  807. duplicate_document_ids.append(document.id)
  808. continue
  809. document = DocumentService.build_document(
  810. dataset,
  811. dataset_process_rule.id, # type: ignore
  812. knowledge_config.data_source.info_list.data_source_type,
  813. knowledge_config.doc_form,
  814. knowledge_config.doc_language,
  815. data_source_info,
  816. created_from,
  817. position,
  818. account,
  819. file_name,
  820. batch,
  821. )
  822. db.session.add(document)
  823. db.session.flush()
  824. document_ids.append(document.id)
  825. documents.append(document)
  826. position += 1
  827. elif knowledge_config.data_source.info_list.data_source_type == "notion_import":
  828. notion_info_list = knowledge_config.data_source.info_list.notion_info_list
  829. if not notion_info_list:
  830. raise ValueError("No notion info list found.")
  831. exist_page_ids = []
  832. exist_document = {}
  833. documents = Document.query.filter_by(
  834. dataset_id=dataset.id,
  835. tenant_id=current_user.current_tenant_id,
  836. data_source_type="notion_import",
  837. enabled=True,
  838. ).all()
  839. if documents:
  840. for document in documents:
  841. data_source_info = json.loads(document.data_source_info)
  842. exist_page_ids.append(data_source_info["notion_page_id"])
  843. exist_document[data_source_info["notion_page_id"]] = document.id
  844. for notion_info in notion_info_list:
  845. workspace_id = notion_info.workspace_id
  846. data_source_binding = DataSourceOauthBinding.query.filter(
  847. db.and_(
  848. DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
  849. DataSourceOauthBinding.provider == "notion",
  850. DataSourceOauthBinding.disabled == False,
  851. DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"',
  852. )
  853. ).first()
  854. if not data_source_binding:
  855. raise ValueError("Data source binding not found.")
  856. for page in notion_info.pages:
  857. if page.page_id not in exist_page_ids:
  858. data_source_info = {
  859. "notion_workspace_id": workspace_id,
  860. "notion_page_id": page.page_id,
  861. "notion_page_icon": page.page_icon.model_dump() if page.page_icon else None,
  862. "type": page.type,
  863. }
  864. document = DocumentService.build_document(
  865. dataset,
  866. dataset_process_rule.id, # type: ignore
  867. knowledge_config.data_source.info_list.data_source_type,
  868. knowledge_config.doc_form,
  869. knowledge_config.doc_language,
  870. data_source_info,
  871. created_from,
  872. position,
  873. account,
  874. page.page_name,
  875. batch,
  876. )
  877. db.session.add(document)
  878. db.session.flush()
  879. document_ids.append(document.id)
  880. documents.append(document)
  881. position += 1
  882. else:
  883. exist_document.pop(page.page_id)
  884. # delete not selected documents
  885. if len(exist_document) > 0:
  886. clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
  887. elif knowledge_config.data_source.info_list.data_source_type == "website_crawl":
  888. website_info = knowledge_config.data_source.info_list.website_info_list
  889. if not website_info:
  890. raise ValueError("No website info list found.")
  891. urls = website_info.urls
  892. for url in urls:
  893. data_source_info = {
  894. "url": url,
  895. "provider": website_info.provider,
  896. "job_id": website_info.job_id,
  897. "only_main_content": website_info.only_main_content,
  898. "mode": "crawl",
  899. }
  900. if len(url) > 255:
  901. document_name = url[:200] + "..."
  902. else:
  903. document_name = url
  904. document = DocumentService.build_document(
  905. dataset,
  906. dataset_process_rule.id, # type: ignore
  907. knowledge_config.data_source.info_list.data_source_type,
  908. knowledge_config.doc_form,
  909. knowledge_config.doc_language,
  910. data_source_info,
  911. created_from,
  912. position,
  913. account,
  914. document_name,
  915. batch,
  916. )
  917. db.session.add(document)
  918. db.session.flush()
  919. document_ids.append(document.id)
  920. documents.append(document)
  921. position += 1
  922. db.session.commit()
  923. # trigger async task
  924. if document_ids:
  925. document_indexing_task.delay(dataset.id, document_ids)
  926. if duplicate_document_ids:
  927. duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids)
  928. return documents, batch
  929. @staticmethod
  930. def check_documents_upload_quota(count: int, features: FeatureModel):
  931. can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size
  932. if count > can_upload_size:
  933. raise ValueError(
  934. f"You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded."
  935. )
  936. @staticmethod
  937. def build_document(
  938. dataset: Dataset,
  939. process_rule_id: str,
  940. data_source_type: str,
  941. document_form: str,
  942. document_language: str,
  943. data_source_info: dict,
  944. created_from: str,
  945. position: int,
  946. account: Account,
  947. name: str,
  948. batch: str,
  949. ):
  950. document = Document(
  951. tenant_id=dataset.tenant_id,
  952. dataset_id=dataset.id,
  953. position=position,
  954. data_source_type=data_source_type,
  955. data_source_info=json.dumps(data_source_info),
  956. dataset_process_rule_id=process_rule_id,
  957. batch=batch,
  958. name=name,
  959. created_from=created_from,
  960. created_by=account.id,
  961. doc_form=document_form,
  962. doc_language=document_language,
  963. )
  964. return document
  965. @staticmethod
  966. def get_tenant_documents_count():
  967. documents_count = Document.query.filter(
  968. Document.completed_at.isnot(None),
  969. Document.enabled == True,
  970. Document.archived == False,
  971. Document.tenant_id == current_user.current_tenant_id,
  972. ).count()
  973. return documents_count
  974. @staticmethod
  975. def update_document_with_dataset_id(
  976. dataset: Dataset,
  977. document_data: KnowledgeConfig,
  978. account: Account,
  979. dataset_process_rule: Optional[DatasetProcessRule] = None,
  980. created_from: str = "web",
  981. ):
  982. DatasetService.check_dataset_model_setting(dataset)
  983. document = DocumentService.get_document(dataset.id, document_data.original_document_id)
  984. if document is None:
  985. raise NotFound("Document not found")
  986. if document.display_status != "available":
  987. raise ValueError("Document is not available")
  988. # save process rule
  989. if document_data.process_rule:
  990. process_rule = document_data.process_rule
  991. if process_rule.mode in {"custom", "hierarchical"}:
  992. dataset_process_rule = DatasetProcessRule(
  993. dataset_id=dataset.id,
  994. mode=process_rule.mode,
  995. rules=process_rule.rules.model_dump_json() if process_rule.rules else None,
  996. created_by=account.id,
  997. )
  998. elif process_rule.mode == "automatic":
  999. dataset_process_rule = DatasetProcessRule(
  1000. dataset_id=dataset.id,
  1001. mode=process_rule.mode,
  1002. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  1003. created_by=account.id,
  1004. )
  1005. if dataset_process_rule is not None:
  1006. db.session.add(dataset_process_rule)
  1007. db.session.commit()
  1008. document.dataset_process_rule_id = dataset_process_rule.id
  1009. # update document data source
  1010. if document_data.data_source:
  1011. file_name = ""
  1012. data_source_info = {}
  1013. if document_data.data_source.info_list.data_source_type == "upload_file":
  1014. if not document_data.data_source.info_list.file_info_list:
  1015. raise ValueError("No file info list found.")
  1016. upload_file_list = document_data.data_source.info_list.file_info_list.file_ids
  1017. for file_id in upload_file_list:
  1018. file = (
  1019. db.session.query(UploadFile)
  1020. .filter(UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id)
  1021. .first()
  1022. )
  1023. # raise error if file not found
  1024. if not file:
  1025. raise FileNotExistsError()
  1026. file_name = file.name
  1027. data_source_info = {
  1028. "upload_file_id": file_id,
  1029. }
  1030. elif document_data.data_source.info_list.data_source_type == "notion_import":
  1031. if not document_data.data_source.info_list.notion_info_list:
  1032. raise ValueError("No notion info list found.")
  1033. notion_info_list = document_data.data_source.info_list.notion_info_list
  1034. for notion_info in notion_info_list:
  1035. workspace_id = notion_info.workspace_id
  1036. data_source_binding = DataSourceOauthBinding.query.filter(
  1037. db.and_(
  1038. DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
  1039. DataSourceOauthBinding.provider == "notion",
  1040. DataSourceOauthBinding.disabled == False,
  1041. DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"',
  1042. )
  1043. ).first()
  1044. if not data_source_binding:
  1045. raise ValueError("Data source binding not found.")
  1046. for page in notion_info.pages:
  1047. data_source_info = {
  1048. "notion_workspace_id": workspace_id,
  1049. "notion_page_id": page.page_id,
  1050. "notion_page_icon": page.page_icon.model_dump() if page.page_icon else None, # type: ignore
  1051. "type": page.type,
  1052. }
  1053. elif document_data.data_source.info_list.data_source_type == "website_crawl":
  1054. website_info = document_data.data_source.info_list.website_info_list
  1055. if website_info:
  1056. urls = website_info.urls
  1057. for url in urls:
  1058. data_source_info = {
  1059. "url": url,
  1060. "provider": website_info.provider,
  1061. "job_id": website_info.job_id,
  1062. "only_main_content": website_info.only_main_content, # type: ignore
  1063. "mode": "crawl",
  1064. }
  1065. document.data_source_type = document_data.data_source.info_list.data_source_type
  1066. document.data_source_info = json.dumps(data_source_info)
  1067. document.name = file_name
  1068. # update document name
  1069. if document_data.name:
  1070. document.name = document_data.name
  1071. # update document to be waiting
  1072. document.indexing_status = "waiting"
  1073. document.completed_at = None
  1074. document.processing_started_at = None
  1075. document.parsing_completed_at = None
  1076. document.cleaning_completed_at = None
  1077. document.splitting_completed_at = None
  1078. document.updated_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
  1079. document.created_from = created_from
  1080. document.doc_form = document_data.doc_form
  1081. db.session.add(document)
  1082. db.session.commit()
  1083. # update document segment
  1084. update_params = {DocumentSegment.status: "re_segment"}
  1085. DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
  1086. db.session.commit()
  1087. # trigger async task
  1088. document_indexing_update_task.delay(document.dataset_id, document.id)
  1089. return document
  1090. @staticmethod
  1091. def save_document_without_dataset_id(tenant_id: str, knowledge_config: KnowledgeConfig, account: Account):
  1092. features = FeatureService.get_features(current_user.current_tenant_id)
  1093. if features.billing.enabled:
  1094. count = 0
  1095. if knowledge_config.data_source.info_list.data_source_type == "upload_file":
  1096. upload_file_list = (
  1097. knowledge_config.data_source.info_list.file_info_list.file_ids
  1098. if knowledge_config.data_source.info_list.file_info_list
  1099. else []
  1100. )
  1101. count = len(upload_file_list)
  1102. elif knowledge_config.data_source.info_list.data_source_type == "notion_import":
  1103. notion_info_list = knowledge_config.data_source.info_list.notion_info_list
  1104. if notion_info_list:
  1105. for notion_info in notion_info_list:
  1106. count = count + len(notion_info.pages)
  1107. elif knowledge_config.data_source.info_list.data_source_type == "website_crawl":
  1108. website_info = knowledge_config.data_source.info_list.website_info_list
  1109. if website_info:
  1110. count = len(website_info.urls)
  1111. batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
  1112. if count > batch_upload_limit:
  1113. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  1114. DocumentService.check_documents_upload_quota(count, features)
  1115. dataset_collection_binding_id = None
  1116. retrieval_model = None
  1117. if knowledge_config.indexing_technique == "high_quality":
  1118. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  1119. knowledge_config.embedding_model_provider, # type: ignore
  1120. knowledge_config.embedding_model, # type: ignore
  1121. )
  1122. dataset_collection_binding_id = dataset_collection_binding.id
  1123. if knowledge_config.retrieval_model:
  1124. retrieval_model = knowledge_config.retrieval_model
  1125. else:
  1126. retrieval_model = RetrievalModel(
  1127. search_method=RetrievalMethod.SEMANTIC_SEARCH.value,
  1128. reranking_enable=False,
  1129. reranking_model=RerankingModel(reranking_provider_name="", reranking_model_name=""),
  1130. top_k=2,
  1131. score_threshold_enabled=False,
  1132. )
  1133. # save dataset
  1134. dataset = Dataset(
  1135. tenant_id=tenant_id,
  1136. name="",
  1137. data_source_type=knowledge_config.data_source.info_list.data_source_type,
  1138. indexing_technique=knowledge_config.indexing_technique,
  1139. created_by=account.id,
  1140. embedding_model=knowledge_config.embedding_model,
  1141. embedding_model_provider=knowledge_config.embedding_model_provider,
  1142. collection_binding_id=dataset_collection_binding_id,
  1143. retrieval_model=retrieval_model.model_dump() if retrieval_model else None,
  1144. )
  1145. db.session.add(dataset) # type: ignore
  1146. db.session.flush()
  1147. documents, batch = DocumentService.save_document_with_dataset_id(dataset, knowledge_config, account)
  1148. cut_length = 18
  1149. cut_name = documents[0].name[:cut_length]
  1150. dataset.name = cut_name + "..."
  1151. dataset.description = "useful for when you want to answer queries about the " + documents[0].name
  1152. db.session.commit()
  1153. return dataset, documents, batch
  1154. @classmethod
  1155. def document_create_args_validate(cls, knowledge_config: KnowledgeConfig):
  1156. if not knowledge_config.data_source and not knowledge_config.process_rule:
  1157. raise ValueError("Data source or Process rule is required")
  1158. else:
  1159. if knowledge_config.data_source:
  1160. DocumentService.data_source_args_validate(knowledge_config)
  1161. if knowledge_config.process_rule:
  1162. DocumentService.process_rule_args_validate(knowledge_config)
  1163. @classmethod
  1164. def data_source_args_validate(cls, knowledge_config: KnowledgeConfig):
  1165. if not knowledge_config.data_source:
  1166. raise ValueError("Data source is required")
  1167. if knowledge_config.data_source.info_list.data_source_type not in Document.DATA_SOURCES:
  1168. raise ValueError("Data source type is invalid")
  1169. if not knowledge_config.data_source.info_list:
  1170. raise ValueError("Data source info is required")
  1171. if knowledge_config.data_source.info_list.data_source_type == "upload_file":
  1172. if not knowledge_config.data_source.info_list.file_info_list:
  1173. raise ValueError("File source info is required")
  1174. if knowledge_config.data_source.info_list.data_source_type == "notion_import":
  1175. if not knowledge_config.data_source.info_list.notion_info_list:
  1176. raise ValueError("Notion source info is required")
  1177. if knowledge_config.data_source.info_list.data_source_type == "website_crawl":
  1178. if not knowledge_config.data_source.info_list.website_info_list:
  1179. raise ValueError("Website source info is required")
  1180. @classmethod
  1181. def process_rule_args_validate(cls, knowledge_config: KnowledgeConfig):
  1182. if not knowledge_config.process_rule:
  1183. raise ValueError("Process rule is required")
  1184. if not knowledge_config.process_rule.mode:
  1185. raise ValueError("Process rule mode is required")
  1186. if knowledge_config.process_rule.mode not in DatasetProcessRule.MODES:
  1187. raise ValueError("Process rule mode is invalid")
  1188. if knowledge_config.process_rule.mode == "automatic":
  1189. knowledge_config.process_rule.rules = None
  1190. else:
  1191. if not knowledge_config.process_rule.rules:
  1192. raise ValueError("Process rule rules is required")
  1193. if knowledge_config.process_rule.rules.pre_processing_rules is None:
  1194. raise ValueError("Process rule pre_processing_rules is required")
  1195. unique_pre_processing_rule_dicts = {}
  1196. for pre_processing_rule in knowledge_config.process_rule.rules.pre_processing_rules:
  1197. if not pre_processing_rule.id:
  1198. raise ValueError("Process rule pre_processing_rules id is required")
  1199. if not isinstance(pre_processing_rule.enabled, bool):
  1200. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  1201. unique_pre_processing_rule_dicts[pre_processing_rule.id] = pre_processing_rule
  1202. knowledge_config.process_rule.rules.pre_processing_rules = list(unique_pre_processing_rule_dicts.values())
  1203. if not knowledge_config.process_rule.rules.segmentation:
  1204. raise ValueError("Process rule segmentation is required")
  1205. if not knowledge_config.process_rule.rules.segmentation.separator:
  1206. raise ValueError("Process rule segmentation separator is required")
  1207. if not isinstance(knowledge_config.process_rule.rules.segmentation.separator, str):
  1208. raise ValueError("Process rule segmentation separator is invalid")
  1209. if not (
  1210. knowledge_config.process_rule.mode == "hierarchical"
  1211. and knowledge_config.process_rule.rules.parent_mode == "full-doc"
  1212. ):
  1213. if not knowledge_config.process_rule.rules.segmentation.max_tokens:
  1214. raise ValueError("Process rule segmentation max_tokens is required")
  1215. if not isinstance(knowledge_config.process_rule.rules.segmentation.max_tokens, int):
  1216. raise ValueError("Process rule segmentation max_tokens is invalid")
  1217. @classmethod
  1218. def estimate_args_validate(cls, args: dict):
  1219. if "info_list" not in args or not args["info_list"]:
  1220. raise ValueError("Data source info is required")
  1221. if not isinstance(args["info_list"], dict):
  1222. raise ValueError("Data info is invalid")
  1223. if "process_rule" not in args or not args["process_rule"]:
  1224. raise ValueError("Process rule is required")
  1225. if not isinstance(args["process_rule"], dict):
  1226. raise ValueError("Process rule is invalid")
  1227. if "mode" not in args["process_rule"] or not args["process_rule"]["mode"]:
  1228. raise ValueError("Process rule mode is required")
  1229. if args["process_rule"]["mode"] not in DatasetProcessRule.MODES:
  1230. raise ValueError("Process rule mode is invalid")
  1231. if args["process_rule"]["mode"] == "automatic":
  1232. args["process_rule"]["rules"] = {}
  1233. else:
  1234. if "rules" not in args["process_rule"] or not args["process_rule"]["rules"]:
  1235. raise ValueError("Process rule rules is required")
  1236. if not isinstance(args["process_rule"]["rules"], dict):
  1237. raise ValueError("Process rule rules is invalid")
  1238. if (
  1239. "pre_processing_rules" not in args["process_rule"]["rules"]
  1240. or args["process_rule"]["rules"]["pre_processing_rules"] is None
  1241. ):
  1242. raise ValueError("Process rule pre_processing_rules is required")
  1243. if not isinstance(args["process_rule"]["rules"]["pre_processing_rules"], list):
  1244. raise ValueError("Process rule pre_processing_rules is invalid")
  1245. unique_pre_processing_rule_dicts = {}
  1246. for pre_processing_rule in args["process_rule"]["rules"]["pre_processing_rules"]:
  1247. if "id" not in pre_processing_rule or not pre_processing_rule["id"]:
  1248. raise ValueError("Process rule pre_processing_rules id is required")
  1249. if pre_processing_rule["id"] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  1250. raise ValueError("Process rule pre_processing_rules id is invalid")
  1251. if "enabled" not in pre_processing_rule or pre_processing_rule["enabled"] is None:
  1252. raise ValueError("Process rule pre_processing_rules enabled is required")
  1253. if not isinstance(pre_processing_rule["enabled"], bool):
  1254. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  1255. unique_pre_processing_rule_dicts[pre_processing_rule["id"]] = pre_processing_rule
  1256. args["process_rule"]["rules"]["pre_processing_rules"] = list(unique_pre_processing_rule_dicts.values())
  1257. if (
  1258. "segmentation" not in args["process_rule"]["rules"]
  1259. or args["process_rule"]["rules"]["segmentation"] is None
  1260. ):
  1261. raise ValueError("Process rule segmentation is required")
  1262. if not isinstance(args["process_rule"]["rules"]["segmentation"], dict):
  1263. raise ValueError("Process rule segmentation is invalid")
  1264. if (
  1265. "separator" not in args["process_rule"]["rules"]["segmentation"]
  1266. or not args["process_rule"]["rules"]["segmentation"]["separator"]
  1267. ):
  1268. raise ValueError("Process rule segmentation separator is required")
  1269. if not isinstance(args["process_rule"]["rules"]["segmentation"]["separator"], str):
  1270. raise ValueError("Process rule segmentation separator is invalid")
  1271. if (
  1272. "max_tokens" not in args["process_rule"]["rules"]["segmentation"]
  1273. or not args["process_rule"]["rules"]["segmentation"]["max_tokens"]
  1274. ):
  1275. raise ValueError("Process rule segmentation max_tokens is required")
  1276. if not isinstance(args["process_rule"]["rules"]["segmentation"]["max_tokens"], int):
  1277. raise ValueError("Process rule segmentation max_tokens is invalid")
  1278. class SegmentService:
  1279. @classmethod
  1280. def segment_create_args_validate(cls, args: dict, document: Document):
  1281. if document.doc_form == "qa_model":
  1282. if "answer" not in args or not args["answer"]:
  1283. raise ValueError("Answer is required")
  1284. if not args["answer"].strip():
  1285. raise ValueError("Answer is empty")
  1286. if "content" not in args or not args["content"] or not args["content"].strip():
  1287. raise ValueError("Content is empty")
  1288. @classmethod
  1289. def create_segment(cls, args: dict, document: Document, dataset: Dataset):
  1290. content = args["content"]
  1291. doc_id = str(uuid.uuid4())
  1292. segment_hash = helper.generate_text_hash(content)
  1293. tokens = 0
  1294. if dataset.indexing_technique == "high_quality":
  1295. model_manager = ModelManager()
  1296. embedding_model = model_manager.get_model_instance(
  1297. tenant_id=current_user.current_tenant_id,
  1298. provider=dataset.embedding_model_provider,
  1299. model_type=ModelType.TEXT_EMBEDDING,
  1300. model=dataset.embedding_model,
  1301. )
  1302. # calc embedding use tokens
  1303. tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])
  1304. lock_name = "add_segment_lock_document_id_{}".format(document.id)
  1305. with redis_client.lock(lock_name, timeout=600):
  1306. max_position = (
  1307. db.session.query(func.max(DocumentSegment.position))
  1308. .filter(DocumentSegment.document_id == document.id)
  1309. .scalar()
  1310. )
  1311. segment_document = DocumentSegment(
  1312. tenant_id=current_user.current_tenant_id,
  1313. dataset_id=document.dataset_id,
  1314. document_id=document.id,
  1315. index_node_id=doc_id,
  1316. index_node_hash=segment_hash,
  1317. position=max_position + 1 if max_position else 1,
  1318. content=content,
  1319. word_count=len(content),
  1320. tokens=tokens,
  1321. status="completed",
  1322. indexing_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
  1323. completed_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
  1324. created_by=current_user.id,
  1325. )
  1326. if document.doc_form == "qa_model":
  1327. segment_document.word_count += len(args["answer"])
  1328. segment_document.answer = args["answer"]
  1329. db.session.add(segment_document)
  1330. # update document word count
  1331. document.word_count += segment_document.word_count
  1332. db.session.add(document)
  1333. db.session.commit()
  1334. # save vector index
  1335. try:
  1336. VectorService.create_segments_vector([args["keywords"]], [segment_document], dataset, document.doc_form)
  1337. except Exception as e:
  1338. logging.exception("create segment index failed")
  1339. segment_document.enabled = False
  1340. segment_document.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
  1341. segment_document.status = "error"
  1342. segment_document.error = str(e)
  1343. db.session.commit()
  1344. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
  1345. return segment
  1346. @classmethod
  1347. def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
  1348. lock_name = "multi_add_segment_lock_document_id_{}".format(document.id)
  1349. increment_word_count = 0
  1350. with redis_client.lock(lock_name, timeout=600):
  1351. embedding_model = None
  1352. if dataset.indexing_technique == "high_quality":
  1353. model_manager = ModelManager()
  1354. embedding_model = model_manager.get_model_instance(
  1355. tenant_id=current_user.current_tenant_id,
  1356. provider=dataset.embedding_model_provider,
  1357. model_type=ModelType.TEXT_EMBEDDING,
  1358. model=dataset.embedding_model,
  1359. )
  1360. max_position = (
  1361. db.session.query(func.max(DocumentSegment.position))
  1362. .filter(DocumentSegment.document_id == document.id)
  1363. .scalar()
  1364. )
  1365. pre_segment_data_list = []
  1366. segment_data_list = []
  1367. keywords_list = []
  1368. position = max_position + 1 if max_position else 1
  1369. for segment_item in segments:
  1370. content = segment_item["content"]
  1371. doc_id = str(uuid.uuid4())
  1372. segment_hash = helper.generate_text_hash(content)
  1373. tokens = 0
  1374. if dataset.indexing_technique == "high_quality" and embedding_model:
  1375. # calc embedding use tokens
  1376. if document.doc_form == "qa_model":
  1377. tokens = embedding_model.get_text_embedding_num_tokens(texts=[content + segment_item["answer"]])
  1378. else:
  1379. tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])
  1380. segment_document = DocumentSegment(
  1381. tenant_id=current_user.current_tenant_id,
  1382. dataset_id=document.dataset_id,
  1383. document_id=document.id,
  1384. index_node_id=doc_id,
  1385. index_node_hash=segment_hash,
  1386. position=position,
  1387. content=content,
  1388. word_count=len(content),
  1389. tokens=tokens,
  1390. status="completed",
  1391. indexing_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
  1392. completed_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
  1393. created_by=current_user.id,
  1394. )
  1395. if document.doc_form == "qa_model":
  1396. segment_document.answer = segment_item["answer"]
  1397. segment_document.word_count += len(segment_item["answer"])
  1398. increment_word_count += segment_document.word_count
  1399. db.session.add(segment_document)
  1400. segment_data_list.append(segment_document)
  1401. position += 1
  1402. pre_segment_data_list.append(segment_document)
  1403. if "keywords" in segment_item:
  1404. keywords_list.append(segment_item["keywords"])
  1405. else:
  1406. keywords_list.append(None)
  1407. # update document word count
  1408. document.word_count += increment_word_count
  1409. db.session.add(document)
  1410. try:
  1411. # save vector index
  1412. VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset, document.doc_form)
  1413. except Exception as e:
  1414. logging.exception("create segment index failed")
  1415. for segment_document in segment_data_list:
  1416. segment_document.enabled = False
  1417. segment_document.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
  1418. segment_document.status = "error"
  1419. segment_document.error = str(e)
  1420. db.session.commit()
  1421. return segment_data_list
  1422. @classmethod
  1423. def update_segment(cls, args: SegmentUpdateArgs, segment: DocumentSegment, document: Document, dataset: Dataset):
  1424. indexing_cache_key = "segment_{}_indexing".format(segment.id)
  1425. cache_result = redis_client.get(indexing_cache_key)
  1426. if cache_result is not None:
  1427. raise ValueError("Segment is indexing, please try again later")
  1428. if args.enabled is not None:
  1429. action = args.enabled
  1430. if segment.enabled != action:
  1431. if not action:
  1432. segment.enabled = action
  1433. segment.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
  1434. segment.disabled_by = current_user.id
  1435. db.session.add(segment)
  1436. db.session.commit()
  1437. # Set cache to prevent indexing the same segment multiple times
  1438. redis_client.setex(indexing_cache_key, 600, 1)
  1439. disable_segment_from_index_task.delay(segment.id)
  1440. return segment
  1441. if not segment.enabled:
  1442. if args.enabled is not None:
  1443. if not args.enabled:
  1444. raise ValueError("Can't update disabled segment")
  1445. else:
  1446. raise ValueError("Can't update disabled segment")
  1447. try:
  1448. word_count_change = segment.word_count
  1449. content = args.content or segment.content
  1450. if segment.content == content:
  1451. segment.word_count = len(content)
  1452. if document.doc_form == "qa_model":
  1453. segment.answer = args.answer
  1454. segment.word_count += len(args.answer) if args.answer else 0
  1455. word_count_change = segment.word_count - word_count_change
  1456. if args.keywords:
  1457. segment.keywords = args.keywords
  1458. segment.enabled = True
  1459. segment.disabled_at = None
  1460. segment.disabled_by = None
  1461. db.session.add(segment)
  1462. db.session.commit()
  1463. # update document word count
  1464. if word_count_change != 0:
  1465. document.word_count = max(0, document.word_count + word_count_change)
  1466. db.session.add(document)
  1467. # update segment index task
  1468. if args.enabled:
  1469. VectorService.create_segments_vector(
  1470. [args.keywords] if args.keywords else None,
  1471. [segment],
  1472. dataset,
  1473. document.doc_form,
  1474. )
  1475. if document.doc_form == IndexType.PARENT_CHILD_INDEX and args.regenerate_child_chunks:
  1476. # regenerate child chunks
  1477. # get embedding model instance
  1478. if dataset.indexing_technique == "high_quality":
  1479. # check embedding model setting
  1480. model_manager = ModelManager()
  1481. if dataset.embedding_model_provider:
  1482. embedding_model_instance = model_manager.get_model_instance(
  1483. tenant_id=dataset.tenant_id,
  1484. provider=dataset.embedding_model_provider,
  1485. model_type=ModelType.TEXT_EMBEDDING,
  1486. model=dataset.embedding_model,
  1487. )
  1488. else:
  1489. embedding_model_instance = model_manager.get_default_model_instance(
  1490. tenant_id=dataset.tenant_id,
  1491. model_type=ModelType.TEXT_EMBEDDING,
  1492. )
  1493. else:
  1494. raise ValueError("The knowledge base index technique is not high quality!")
  1495. # get the process rule
  1496. processing_rule = (
  1497. db.session.query(DatasetProcessRule)
  1498. .filter(DatasetProcessRule.id == document.dataset_process_rule_id)
  1499. .first()
  1500. )
  1501. if not processing_rule:
  1502. raise ValueError("No processing rule found.")
  1503. VectorService.generate_child_chunks(
  1504. segment, document, dataset, embedding_model_instance, processing_rule, True
  1505. )
  1506. else:
  1507. segment_hash = helper.generate_text_hash(content)
  1508. tokens = 0
  1509. if dataset.indexing_technique == "high_quality":
  1510. model_manager = ModelManager()
  1511. embedding_model = model_manager.get_model_instance(
  1512. tenant_id=current_user.current_tenant_id,
  1513. provider=dataset.embedding_model_provider,
  1514. model_type=ModelType.TEXT_EMBEDDING,
  1515. model=dataset.embedding_model,
  1516. )
  1517. # calc embedding use tokens
  1518. if document.doc_form == "qa_model":
  1519. tokens = embedding_model.get_text_embedding_num_tokens(texts=[content + segment.answer])
  1520. else:
  1521. tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])
  1522. segment.content = content
  1523. segment.index_node_hash = segment_hash
  1524. segment.word_count = len(content)
  1525. segment.tokens = tokens
  1526. segment.status = "completed"
  1527. segment.indexing_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
  1528. segment.completed_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
  1529. segment.updated_by = current_user.id
  1530. segment.updated_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
  1531. segment.enabled = True
  1532. segment.disabled_at = None
  1533. segment.disabled_by = None
  1534. if document.doc_form == "qa_model":
  1535. segment.answer = args.answer
  1536. segment.word_count += len(args.answer) if args.answer else 0
  1537. word_count_change = segment.word_count - word_count_change
  1538. # update document word count
  1539. if word_count_change != 0:
  1540. document.word_count = max(0, document.word_count + word_count_change)
  1541. db.session.add(document)
  1542. db.session.add(segment)
  1543. db.session.commit()
  1544. if document.doc_form == IndexType.PARENT_CHILD_INDEX and args.regenerate_child_chunks:
  1545. # get embedding model instance
  1546. if dataset.indexing_technique == "high_quality":
  1547. # check embedding model setting
  1548. model_manager = ModelManager()
  1549. if dataset.embedding_model_provider:
  1550. embedding_model_instance = model_manager.get_model_instance(
  1551. tenant_id=dataset.tenant_id,
  1552. provider=dataset.embedding_model_provider,
  1553. model_type=ModelType.TEXT_EMBEDDING,
  1554. model=dataset.embedding_model,
  1555. )
  1556. else:
  1557. embedding_model_instance = model_manager.get_default_model_instance(
  1558. tenant_id=dataset.tenant_id,
  1559. model_type=ModelType.TEXT_EMBEDDING,
  1560. )
  1561. else:
  1562. raise ValueError("The knowledge base index technique is not high quality!")
  1563. # get the process rule
  1564. processing_rule = (
  1565. db.session.query(DatasetProcessRule)
  1566. .filter(DatasetProcessRule.id == document.dataset_process_rule_id)
  1567. .first()
  1568. )
  1569. if not processing_rule:
  1570. raise ValueError("No processing rule found.")
  1571. VectorService.generate_child_chunks(
  1572. segment, document, dataset, embedding_model_instance, processing_rule, True
  1573. )
  1574. elif document.doc_form in (IndexType.PARAGRAPH_INDEX, IndexType.QA_INDEX):
  1575. # update segment vector index
  1576. VectorService.update_segment_vector(args.keywords, segment, dataset)
  1577. except Exception as e:
  1578. logging.exception("update segment index failed")
  1579. segment.enabled = False
  1580. segment.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
  1581. segment.status = "error"
  1582. segment.error = str(e)
  1583. db.session.commit()
  1584. new_segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
  1585. return new_segment
  1586. @classmethod
  1587. def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
  1588. indexing_cache_key = "segment_{}_delete_indexing".format(segment.id)
  1589. cache_result = redis_client.get(indexing_cache_key)
  1590. if cache_result is not None:
  1591. raise ValueError("Segment is deleting.")
  1592. # enabled segment need to delete index
  1593. if segment.enabled:
  1594. # send delete segment index task
  1595. redis_client.setex(indexing_cache_key, 600, 1)
  1596. delete_segment_from_index_task.delay([segment.index_node_id], dataset.id, document.id)
  1597. db.session.delete(segment)
  1598. # update document word count
  1599. document.word_count -= segment.word_count
  1600. db.session.add(document)
  1601. db.session.commit()
  1602. @classmethod
  1603. def delete_segments(cls, segment_ids: list, document: Document, dataset: Dataset):
  1604. index_node_ids = (
  1605. DocumentSegment.query.with_entities(DocumentSegment.index_node_id)
  1606. .filter(
  1607. DocumentSegment.id.in_(segment_ids),
  1608. DocumentSegment.dataset_id == dataset.id,
  1609. DocumentSegment.document_id == document.id,
  1610. DocumentSegment.tenant_id == current_user.current_tenant_id,
  1611. )
  1612. .all()
  1613. )
  1614. index_node_ids = [index_node_id[0] for index_node_id in index_node_ids]
  1615. delete_segment_from_index_task.delay(index_node_ids, dataset.id, document.id)
  1616. db.session.query(DocumentSegment).filter(DocumentSegment.id.in_(segment_ids)).delete()
  1617. db.session.commit()
  1618. @classmethod
  1619. def update_segments_status(cls, segment_ids: list, action: str, dataset: Dataset, document: Document):
  1620. if action == "enable":
  1621. segments = (
  1622. db.session.query(DocumentSegment)
  1623. .filter(
  1624. DocumentSegment.id.in_(segment_ids),
  1625. DocumentSegment.dataset_id == dataset.id,
  1626. DocumentSegment.document_id == document.id,
  1627. DocumentSegment.enabled == False,
  1628. )
  1629. .all()
  1630. )
  1631. if not segments:
  1632. return
  1633. real_deal_segmment_ids = []
  1634. for segment in segments:
  1635. indexing_cache_key = "segment_{}_indexing".format(segment.id)
  1636. cache_result = redis_client.get(indexing_cache_key)
  1637. if cache_result is not None:
  1638. continue
  1639. segment.enabled = True
  1640. segment.disabled_at = None
  1641. segment.disabled_by = None
  1642. db.session.add(segment)
  1643. real_deal_segmment_ids.append(segment.id)
  1644. db.session.commit()
  1645. enable_segments_to_index_task.delay(real_deal_segmment_ids, dataset.id, document.id)
  1646. elif action == "disable":
  1647. segments = (
  1648. db.session.query(DocumentSegment)
  1649. .filter(
  1650. DocumentSegment.id.in_(segment_ids),
  1651. DocumentSegment.dataset_id == dataset.id,
  1652. DocumentSegment.document_id == document.id,
  1653. DocumentSegment.enabled == True,
  1654. )
  1655. .all()
  1656. )
  1657. if not segments:
  1658. return
  1659. real_deal_segmment_ids = []
  1660. for segment in segments:
  1661. indexing_cache_key = "segment_{}_indexing".format(segment.id)
  1662. cache_result = redis_client.get(indexing_cache_key)
  1663. if cache_result is not None:
  1664. continue
  1665. segment.enabled = False
  1666. segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1667. segment.disabled_by = current_user.id
  1668. db.session.add(segment)
  1669. real_deal_segmment_ids.append(segment.id)
  1670. db.session.commit()
  1671. disable_segments_from_index_task.delay(real_deal_segmment_ids, dataset.id, document.id)
  1672. else:
  1673. raise InvalidActionError()
  1674. @classmethod
  1675. def create_child_chunk(
  1676. cls, content: str, segment: DocumentSegment, document: Document, dataset: Dataset
  1677. ) -> ChildChunk:
  1678. lock_name = "add_child_lock_{}".format(segment.id)
  1679. with redis_client.lock(lock_name, timeout=20):
  1680. index_node_id = str(uuid.uuid4())
  1681. index_node_hash = helper.generate_text_hash(content)
  1682. child_chunk_count = (
  1683. db.session.query(ChildChunk)
  1684. .filter(
  1685. ChildChunk.tenant_id == current_user.current_tenant_id,
  1686. ChildChunk.dataset_id == dataset.id,
  1687. ChildChunk.document_id == document.id,
  1688. ChildChunk.segment_id == segment.id,
  1689. )
  1690. .count()
  1691. )
  1692. max_position = (
  1693. db.session.query(func.max(ChildChunk.position))
  1694. .filter(
  1695. ChildChunk.tenant_id == current_user.current_tenant_id,
  1696. ChildChunk.dataset_id == dataset.id,
  1697. ChildChunk.document_id == document.id,
  1698. ChildChunk.segment_id == segment.id,
  1699. )
  1700. .scalar()
  1701. )
  1702. child_chunk = ChildChunk(
  1703. tenant_id=current_user.current_tenant_id,
  1704. dataset_id=dataset.id,
  1705. document_id=document.id,
  1706. segment_id=segment.id,
  1707. position=max_position + 1,
  1708. index_node_id=index_node_id,
  1709. index_node_hash=index_node_hash,
  1710. content=content,
  1711. word_count=len(content),
  1712. type="customized",
  1713. created_by=current_user.id,
  1714. )
  1715. db.session.add(child_chunk)
  1716. # save vector index
  1717. try:
  1718. VectorService.create_child_chunk_vector(child_chunk, dataset)
  1719. except Exception as e:
  1720. logging.exception("create child chunk index failed")
  1721. db.session.rollback()
  1722. raise ChildChunkIndexingError(str(e))
  1723. db.session.commit()
  1724. return child_chunk
  1725. @classmethod
  1726. def update_child_chunks(
  1727. cls,
  1728. child_chunks_update_args: list[ChildChunkUpdateArgs],
  1729. segment: DocumentSegment,
  1730. document: Document,
  1731. dataset: Dataset,
  1732. ) -> list[ChildChunk]:
  1733. child_chunks = (
  1734. db.session.query(ChildChunk)
  1735. .filter(
  1736. ChildChunk.dataset_id == dataset.id,
  1737. ChildChunk.document_id == document.id,
  1738. ChildChunk.segment_id == segment.id,
  1739. )
  1740. .all()
  1741. )
  1742. child_chunks_map = {chunk.id: chunk for chunk in child_chunks}
  1743. new_child_chunks, update_child_chunks, delete_child_chunks, new_child_chunks_args = [], [], [], []
  1744. for child_chunk_update_args in child_chunks_update_args:
  1745. if child_chunk_update_args.id:
  1746. child_chunk = child_chunks_map.pop(child_chunk_update_args.id, None)
  1747. if child_chunk:
  1748. if child_chunk.content != child_chunk_update_args.content:
  1749. child_chunk.content = child_chunk_update_args.content
  1750. child_chunk.word_count = len(child_chunk.content)
  1751. child_chunk.updated_by = current_user.id
  1752. child_chunk.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1753. child_chunk.type = "customized"
  1754. update_child_chunks.append(child_chunk)
  1755. else:
  1756. new_child_chunks_args.append(child_chunk_update_args)
  1757. if child_chunks_map:
  1758. delete_child_chunks = list(child_chunks_map.values())
  1759. try:
  1760. if update_child_chunks:
  1761. db.session.bulk_save_objects(update_child_chunks)
  1762. if delete_child_chunks:
  1763. for child_chunk in delete_child_chunks:
  1764. db.session.delete(child_chunk)
  1765. if new_child_chunks_args:
  1766. child_chunk_count = len(child_chunks)
  1767. for position, args in enumerate(new_child_chunks_args, start=child_chunk_count + 1):
  1768. index_node_id = str(uuid.uuid4())
  1769. index_node_hash = helper.generate_text_hash(args.content)
  1770. child_chunk = ChildChunk(
  1771. tenant_id=current_user.current_tenant_id,
  1772. dataset_id=dataset.id,
  1773. document_id=document.id,
  1774. segment_id=segment.id,
  1775. position=position,
  1776. index_node_id=index_node_id,
  1777. index_node_hash=index_node_hash,
  1778. content=args.content,
  1779. word_count=len(args.content),
  1780. type="customized",
  1781. created_by=current_user.id,
  1782. )
  1783. db.session.add(child_chunk)
  1784. db.session.flush()
  1785. new_child_chunks.append(child_chunk)
  1786. VectorService.update_child_chunk_vector(new_child_chunks, update_child_chunks, delete_child_chunks, dataset)
  1787. db.session.commit()
  1788. except Exception as e:
  1789. logging.exception("update child chunk index failed")
  1790. db.session.rollback()
  1791. raise ChildChunkIndexingError(str(e))
  1792. return sorted(new_child_chunks + update_child_chunks, key=lambda x: x.position)
  1793. @classmethod
  1794. def update_child_chunk(
  1795. cls,
  1796. content: str,
  1797. child_chunk: ChildChunk,
  1798. segment: DocumentSegment,
  1799. document: Document,
  1800. dataset: Dataset,
  1801. ) -> ChildChunk:
  1802. try:
  1803. child_chunk.content = content
  1804. child_chunk.word_count = len(content)
  1805. child_chunk.updated_by = current_user.id
  1806. child_chunk.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1807. child_chunk.type = "customized"
  1808. db.session.add(child_chunk)
  1809. VectorService.update_child_chunk_vector([], [child_chunk], [], dataset)
  1810. db.session.commit()
  1811. except Exception as e:
  1812. logging.exception("update child chunk index failed")
  1813. db.session.rollback()
  1814. raise ChildChunkIndexingError(str(e))
  1815. return child_chunk
  1816. @classmethod
  1817. def delete_child_chunk(cls, child_chunk: ChildChunk, dataset: Dataset):
  1818. db.session.delete(child_chunk)
  1819. try:
  1820. VectorService.delete_child_chunk_vector(child_chunk, dataset)
  1821. except Exception as e:
  1822. logging.exception("delete child chunk index failed")
  1823. db.session.rollback()
  1824. raise ChildChunkDeleteIndexError(str(e))
  1825. db.session.commit()
  1826. @classmethod
  1827. def get_child_chunks(
  1828. cls, segment_id: str, document_id: str, dataset_id: str, page: int, limit: int, keyword: Optional[str] = None
  1829. ):
  1830. query = ChildChunk.query.filter_by(
  1831. tenant_id=current_user.current_tenant_id,
  1832. dataset_id=dataset_id,
  1833. document_id=document_id,
  1834. segment_id=segment_id,
  1835. ).order_by(ChildChunk.position.asc())
  1836. if keyword:
  1837. query = query.where(ChildChunk.content.ilike(f"%{keyword}%"))
  1838. return query.paginate(page=page, per_page=limit, max_per_page=100, error_out=False)
  1839. class DatasetCollectionBindingService:
  1840. @classmethod
  1841. def get_dataset_collection_binding(
  1842. cls, provider_name: str, model_name: str, collection_type: str = "dataset"
  1843. ) -> DatasetCollectionBinding:
  1844. dataset_collection_binding = (
  1845. db.session.query(DatasetCollectionBinding)
  1846. .filter(
  1847. DatasetCollectionBinding.provider_name == provider_name,
  1848. DatasetCollectionBinding.model_name == model_name,
  1849. DatasetCollectionBinding.type == collection_type,
  1850. )
  1851. .order_by(DatasetCollectionBinding.created_at)
  1852. .first()
  1853. )
  1854. if not dataset_collection_binding:
  1855. dataset_collection_binding = DatasetCollectionBinding(
  1856. provider_name=provider_name,
  1857. model_name=model_name,
  1858. collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),
  1859. type=collection_type,
  1860. )
  1861. db.session.add(dataset_collection_binding)
  1862. db.session.commit()
  1863. return dataset_collection_binding
  1864. @classmethod
  1865. def get_dataset_collection_binding_by_id_and_type(
  1866. cls, collection_binding_id: str, collection_type: str = "dataset"
  1867. ) -> DatasetCollectionBinding:
  1868. dataset_collection_binding = (
  1869. db.session.query(DatasetCollectionBinding)
  1870. .filter(
  1871. DatasetCollectionBinding.id == collection_binding_id, DatasetCollectionBinding.type == collection_type
  1872. )
  1873. .order_by(DatasetCollectionBinding.created_at)
  1874. .first()
  1875. )
  1876. if not dataset_collection_binding:
  1877. raise ValueError("Dataset collection binding not found")
  1878. return dataset_collection_binding
  1879. class DatasetPermissionService:
  1880. @classmethod
  1881. def get_dataset_partial_member_list(cls, dataset_id):
  1882. user_list_query = (
  1883. db.session.query(
  1884. DatasetPermission.account_id,
  1885. )
  1886. .filter(DatasetPermission.dataset_id == dataset_id)
  1887. .all()
  1888. )
  1889. user_list = []
  1890. for user in user_list_query:
  1891. user_list.append(user.account_id)
  1892. return user_list
  1893. @classmethod
  1894. def update_partial_member_list(cls, tenant_id, dataset_id, user_list):
  1895. try:
  1896. db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()
  1897. permissions = []
  1898. for user in user_list:
  1899. permission = DatasetPermission(
  1900. tenant_id=tenant_id,
  1901. dataset_id=dataset_id,
  1902. account_id=user["user_id"],
  1903. )
  1904. permissions.append(permission)
  1905. db.session.add_all(permissions)
  1906. db.session.commit()
  1907. except Exception as e:
  1908. db.session.rollback()
  1909. raise e
  1910. @classmethod
  1911. def check_permission(cls, user, dataset, requested_permission, requested_partial_member_list):
  1912. if not user.is_dataset_editor:
  1913. raise NoPermissionError("User does not have permission to edit this dataset.")
  1914. if user.is_dataset_operator and dataset.permission != requested_permission:
  1915. raise NoPermissionError("Dataset operators cannot change the dataset permissions.")
  1916. if user.is_dataset_operator and requested_permission == "partial_members":
  1917. if not requested_partial_member_list:
  1918. raise ValueError("Partial member list is required when setting to partial members.")
  1919. local_member_list = cls.get_dataset_partial_member_list(dataset.id)
  1920. request_member_list = [user["user_id"] for user in requested_partial_member_list]
  1921. if set(local_member_list) != set(request_member_list):
  1922. raise ValueError("Dataset operators cannot change the dataset permissions.")
  1923. @classmethod
  1924. def clear_partial_member_list(cls, dataset_id):
  1925. try:
  1926. db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()
  1927. db.session.commit()
  1928. except Exception as e:
  1929. db.session.rollback()
  1930. raise e