dataset_service.py 56 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256
  1. import datetime
  2. import json
  3. import logging
  4. import random
  5. import time
  6. import uuid
  7. from typing import Optional, cast
  8. from flask import current_app
  9. from flask_login import current_user
  10. from sqlalchemy import func
  11. from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
  12. from core.index.index import IndexBuilder
  13. from core.model_manager import ModelManager
  14. from core.model_runtime.entities.model_entities import ModelType
  15. from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
  16. from events.dataset_event import dataset_was_deleted
  17. from events.document_event import document_was_deleted
  18. from extensions.ext_database import db
  19. from extensions.ext_redis import redis_client
  20. from libs import helper
  21. from models.account import Account
  22. from models.dataset import (
  23. AppDatasetJoin,
  24. Dataset,
  25. DatasetCollectionBinding,
  26. DatasetProcessRule,
  27. DatasetQuery,
  28. Document,
  29. DocumentSegment,
  30. )
  31. from models.model import UploadFile
  32. from models.source import DataSourceBinding
  33. from services.errors.account import NoPermissionError
  34. from services.errors.dataset import DatasetNameDuplicateError
  35. from services.errors.document import DocumentIndexingError
  36. from services.errors.file import FileNotExistsError
  37. from services.feature_service import FeatureService
  38. from services.vector_service import VectorService
  39. from tasks.clean_notion_document_task import clean_notion_document_task
  40. from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
  41. from tasks.delete_segment_from_index_task import delete_segment_from_index_task
  42. from tasks.document_indexing_task import document_indexing_task
  43. from tasks.document_indexing_update_task import document_indexing_update_task
  44. from tasks.recover_document_indexing_task import recover_document_indexing_task
  45. class DatasetService:
  46. @staticmethod
  47. def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None):
  48. if user:
  49. permission_filter = db.or_(Dataset.created_by == user.id,
  50. Dataset.permission == 'all_team_members')
  51. else:
  52. permission_filter = Dataset.permission == 'all_team_members'
  53. datasets = Dataset.query.filter(
  54. db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \
  55. .order_by(Dataset.created_at.desc()) \
  56. .paginate(
  57. page=page,
  58. per_page=per_page,
  59. max_per_page=100,
  60. error_out=False
  61. )
  62. return datasets.items, datasets.total
  63. @staticmethod
  64. def get_process_rules(dataset_id):
  65. # get the latest process rule
  66. dataset_process_rule = db.session.query(DatasetProcessRule). \
  67. filter(DatasetProcessRule.dataset_id == dataset_id). \
  68. order_by(DatasetProcessRule.created_at.desc()). \
  69. limit(1). \
  70. one_or_none()
  71. if dataset_process_rule:
  72. mode = dataset_process_rule.mode
  73. rules = dataset_process_rule.rules_dict
  74. else:
  75. mode = DocumentService.DEFAULT_RULES['mode']
  76. rules = DocumentService.DEFAULT_RULES['rules']
  77. return {
  78. 'mode': mode,
  79. 'rules': rules
  80. }
  81. @staticmethod
  82. def get_datasets_by_ids(ids, tenant_id):
  83. datasets = Dataset.query.filter(Dataset.id.in_(ids),
  84. Dataset.tenant_id == tenant_id).paginate(
  85. page=1, per_page=len(ids), max_per_page=len(ids), error_out=False)
  86. return datasets.items, datasets.total
  87. @staticmethod
  88. def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
  89. # check if dataset name already exists
  90. if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
  91. raise DatasetNameDuplicateError(
  92. f'Dataset with name {name} already exists.')
  93. embedding_model = None
  94. if indexing_technique == 'high_quality':
  95. model_manager = ModelManager()
  96. embedding_model = model_manager.get_default_model_instance(
  97. tenant_id=tenant_id,
  98. model_type=ModelType.TEXT_EMBEDDING
  99. )
  100. dataset = Dataset(name=name, indexing_technique=indexing_technique)
  101. # dataset = Dataset(name=name, provider=provider, config=config)
  102. dataset.created_by = account.id
  103. dataset.updated_by = account.id
  104. dataset.tenant_id = tenant_id
  105. dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
  106. dataset.embedding_model = embedding_model.model if embedding_model else None
  107. db.session.add(dataset)
  108. db.session.commit()
  109. return dataset
  110. @staticmethod
  111. def get_dataset(dataset_id):
  112. dataset = Dataset.query.filter_by(
  113. id=dataset_id
  114. ).first()
  115. if dataset is None:
  116. return None
  117. else:
  118. return dataset
  119. @staticmethod
  120. def check_dataset_model_setting(dataset):
  121. if dataset.indexing_technique == 'high_quality':
  122. try:
  123. model_manager = ModelManager()
  124. model_manager.get_model_instance(
  125. tenant_id=dataset.tenant_id,
  126. provider=dataset.embedding_model_provider,
  127. model_type=ModelType.TEXT_EMBEDDING,
  128. model=dataset.embedding_model
  129. )
  130. except LLMBadRequestError:
  131. raise ValueError(
  132. "No Embedding Model available. Please configure a valid provider "
  133. "in the Settings -> Model Provider.")
  134. except ProviderTokenNotInitError as ex:
  135. raise ValueError(f"The dataset in unavailable, due to: "
  136. f"{ex.description}")
  137. @staticmethod
  138. def update_dataset(dataset_id, data, user):
  139. filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
  140. dataset = DatasetService.get_dataset(dataset_id)
  141. DatasetService.check_dataset_permission(dataset, user)
  142. action = None
  143. if dataset.indexing_technique != data['indexing_technique']:
  144. # if update indexing_technique
  145. if data['indexing_technique'] == 'economy':
  146. action = 'remove'
  147. filtered_data['embedding_model'] = None
  148. filtered_data['embedding_model_provider'] = None
  149. filtered_data['collection_binding_id'] = None
  150. elif data['indexing_technique'] == 'high_quality':
  151. action = 'add'
  152. # get embedding model setting
  153. try:
  154. model_manager = ModelManager()
  155. embedding_model = model_manager.get_default_model_instance(
  156. tenant_id=current_user.current_tenant_id,
  157. model_type=ModelType.TEXT_EMBEDDING
  158. )
  159. filtered_data['embedding_model'] = embedding_model.model
  160. filtered_data['embedding_model_provider'] = embedding_model.provider
  161. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  162. embedding_model.provider,
  163. embedding_model.model
  164. )
  165. filtered_data['collection_binding_id'] = dataset_collection_binding.id
  166. except LLMBadRequestError:
  167. raise ValueError(
  168. "No Embedding Model available. Please configure a valid provider "
  169. "in the Settings -> Model Provider.")
  170. except ProviderTokenNotInitError as ex:
  171. raise ValueError(ex.description)
  172. filtered_data['updated_by'] = user.id
  173. filtered_data['updated_at'] = datetime.datetime.now()
  174. # update Retrieval model
  175. filtered_data['retrieval_model'] = data['retrieval_model']
  176. dataset.query.filter_by(id=dataset_id).update(filtered_data)
  177. db.session.commit()
  178. if action:
  179. deal_dataset_vector_index_task.delay(dataset_id, action)
  180. return dataset
  181. @staticmethod
  182. def delete_dataset(dataset_id, user):
  183. # todo: cannot delete dataset if it is being processed
  184. dataset = DatasetService.get_dataset(dataset_id)
  185. if dataset is None:
  186. return False
  187. DatasetService.check_dataset_permission(dataset, user)
  188. dataset_was_deleted.send(dataset)
  189. db.session.delete(dataset)
  190. db.session.commit()
  191. return True
  192. @staticmethod
  193. def check_dataset_permission(dataset, user):
  194. if dataset.tenant_id != user.current_tenant_id:
  195. logging.debug(
  196. f'User {user.id} does not have permission to access dataset {dataset.id}')
  197. raise NoPermissionError(
  198. 'You do not have permission to access this dataset.')
  199. if dataset.permission == 'only_me' and dataset.created_by != user.id:
  200. logging.debug(
  201. f'User {user.id} does not have permission to access dataset {dataset.id}')
  202. raise NoPermissionError(
  203. 'You do not have permission to access this dataset.')
  204. @staticmethod
  205. def get_dataset_queries(dataset_id: str, page: int, per_page: int):
  206. dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \
  207. .order_by(db.desc(DatasetQuery.created_at)) \
  208. .paginate(
  209. page=page, per_page=per_page, max_per_page=100, error_out=False
  210. )
  211. return dataset_queries.items, dataset_queries.total
  212. @staticmethod
  213. def get_related_apps(dataset_id: str):
  214. return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \
  215. .order_by(db.desc(AppDatasetJoin.created_at)).all()
  216. class DocumentService:
  217. DEFAULT_RULES = {
  218. 'mode': 'custom',
  219. 'rules': {
  220. 'pre_processing_rules': [
  221. {'id': 'remove_extra_spaces', 'enabled': True},
  222. {'id': 'remove_urls_emails', 'enabled': False}
  223. ],
  224. 'segmentation': {
  225. 'delimiter': '\n',
  226. 'max_tokens': 500,
  227. 'chunk_overlap': 50
  228. }
  229. }
  230. }
  231. DOCUMENT_METADATA_SCHEMA = {
  232. "book": {
  233. "title": str,
  234. "language": str,
  235. "author": str,
  236. "publisher": str,
  237. "publication_date": str,
  238. "isbn": str,
  239. "category": str,
  240. },
  241. "web_page": {
  242. "title": str,
  243. "url": str,
  244. "language": str,
  245. "publish_date": str,
  246. "author/publisher": str,
  247. "topic/keywords": str,
  248. "description": str,
  249. },
  250. "paper": {
  251. "title": str,
  252. "language": str,
  253. "author": str,
  254. "publish_date": str,
  255. "journal/conference_name": str,
  256. "volume/issue/page_numbers": str,
  257. "doi": str,
  258. "topic/keywords": str,
  259. "abstract": str,
  260. },
  261. "social_media_post": {
  262. "platform": str,
  263. "author/username": str,
  264. "publish_date": str,
  265. "post_url": str,
  266. "topic/tags": str,
  267. },
  268. "wikipedia_entry": {
  269. "title": str,
  270. "language": str,
  271. "web_page_url": str,
  272. "last_edit_date": str,
  273. "editor/contributor": str,
  274. "summary/introduction": str,
  275. },
  276. "personal_document": {
  277. "title": str,
  278. "author": str,
  279. "creation_date": str,
  280. "last_modified_date": str,
  281. "document_type": str,
  282. "tags/category": str,
  283. },
  284. "business_document": {
  285. "title": str,
  286. "author": str,
  287. "creation_date": str,
  288. "last_modified_date": str,
  289. "document_type": str,
  290. "department/team": str,
  291. },
  292. "im_chat_log": {
  293. "chat_platform": str,
  294. "chat_participants/group_name": str,
  295. "start_date": str,
  296. "end_date": str,
  297. "summary": str,
  298. },
  299. "synced_from_notion": {
  300. "title": str,
  301. "language": str,
  302. "author/creator": str,
  303. "creation_date": str,
  304. "last_modified_date": str,
  305. "notion_page_link": str,
  306. "category/tags": str,
  307. "description": str,
  308. },
  309. "synced_from_github": {
  310. "repository_name": str,
  311. "repository_description": str,
  312. "repository_owner/organization": str,
  313. "code_filename": str,
  314. "code_file_path": str,
  315. "programming_language": str,
  316. "github_link": str,
  317. "open_source_license": str,
  318. "commit_date": str,
  319. "commit_author": str,
  320. },
  321. "others": dict
  322. }
  323. @staticmethod
  324. def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
  325. document = db.session.query(Document).filter(
  326. Document.id == document_id,
  327. Document.dataset_id == dataset_id
  328. ).first()
  329. return document
  330. @staticmethod
  331. def get_document_by_id(document_id: str) -> Optional[Document]:
  332. document = db.session.query(Document).filter(
  333. Document.id == document_id
  334. ).first()
  335. return document
  336. @staticmethod
  337. def get_document_by_dataset_id(dataset_id: str) -> list[Document]:
  338. documents = db.session.query(Document).filter(
  339. Document.dataset_id == dataset_id,
  340. Document.enabled == True
  341. ).all()
  342. return documents
  343. @staticmethod
  344. def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:
  345. documents = db.session.query(Document).filter(
  346. Document.batch == batch,
  347. Document.dataset_id == dataset_id,
  348. Document.tenant_id == current_user.current_tenant_id
  349. ).all()
  350. return documents
  351. @staticmethod
  352. def get_document_file_detail(file_id: str):
  353. file_detail = db.session.query(UploadFile). \
  354. filter(UploadFile.id == file_id). \
  355. one_or_none()
  356. return file_detail
  357. @staticmethod
  358. def check_archived(document):
  359. if document.archived:
  360. return True
  361. else:
  362. return False
  363. @staticmethod
  364. def delete_document(document):
  365. # trigger document_was_deleted signal
  366. document_was_deleted.send(document.id, dataset_id=document.dataset_id)
  367. db.session.delete(document)
  368. db.session.commit()
  369. @staticmethod
  370. def pause_document(document):
  371. if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
  372. raise DocumentIndexingError()
  373. # update document to be paused
  374. document.is_paused = True
  375. document.paused_by = current_user.id
  376. document.paused_at = datetime.datetime.utcnow()
  377. db.session.add(document)
  378. db.session.commit()
  379. # set document paused flag
  380. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  381. redis_client.setnx(indexing_cache_key, "True")
  382. @staticmethod
  383. def recover_document(document):
  384. if not document.is_paused:
  385. raise DocumentIndexingError()
  386. # update document to be recover
  387. document.is_paused = False
  388. document.paused_by = None
  389. document.paused_at = None
  390. db.session.add(document)
  391. db.session.commit()
  392. # delete paused flag
  393. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  394. redis_client.delete(indexing_cache_key)
  395. # trigger async task
  396. recover_document_indexing_task.delay(document.dataset_id, document.id)
  397. @staticmethod
  398. def get_documents_position(dataset_id):
  399. document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
  400. if document:
  401. return document.position + 1
  402. else:
  403. return 1
  404. @staticmethod
  405. def save_document_with_dataset_id(dataset: Dataset, document_data: dict,
  406. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  407. created_from: str = 'web'):
  408. # check document limit
  409. features = FeatureService.get_features(current_user.current_tenant_id)
  410. if features.billing.enabled:
  411. if 'original_document_id' not in document_data or not document_data['original_document_id']:
  412. count = 0
  413. if document_data["data_source"]["type"] == "upload_file":
  414. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  415. count = len(upload_file_list)
  416. elif document_data["data_source"]["type"] == "notion_import":
  417. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  418. for notion_info in notion_info_list:
  419. count = count + len(notion_info['pages'])
  420. batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])
  421. if count > batch_upload_limit:
  422. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  423. # if dataset is empty, update dataset data_source_type
  424. if not dataset.data_source_type:
  425. dataset.data_source_type = document_data["data_source"]["type"]
  426. if not dataset.indexing_technique:
  427. if 'indexing_technique' not in document_data \
  428. or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:
  429. raise ValueError("Indexing technique is required")
  430. dataset.indexing_technique = document_data["indexing_technique"]
  431. if document_data["indexing_technique"] == 'high_quality':
  432. model_manager = ModelManager()
  433. embedding_model = model_manager.get_default_model_instance(
  434. tenant_id=current_user.current_tenant_id,
  435. model_type=ModelType.TEXT_EMBEDDING
  436. )
  437. dataset.embedding_model = embedding_model.model
  438. dataset.embedding_model_provider = embedding_model.provider
  439. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  440. embedding_model.provider,
  441. embedding_model.model
  442. )
  443. dataset.collection_binding_id = dataset_collection_binding.id
  444. if not dataset.retrieval_model:
  445. default_retrieval_model = {
  446. 'search_method': 'semantic_search',
  447. 'reranking_enable': False,
  448. 'reranking_model': {
  449. 'reranking_provider_name': '',
  450. 'reranking_model_name': ''
  451. },
  452. 'top_k': 2,
  453. 'score_threshold_enabled': False
  454. }
  455. dataset.retrieval_model = document_data.get('retrieval_model') if document_data.get(
  456. 'retrieval_model') else default_retrieval_model
  457. documents = []
  458. batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))
  459. if 'original_document_id' in document_data and document_data["original_document_id"]:
  460. document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
  461. documents.append(document)
  462. else:
  463. # save process rule
  464. if not dataset_process_rule:
  465. process_rule = document_data["process_rule"]
  466. if process_rule["mode"] == "custom":
  467. dataset_process_rule = DatasetProcessRule(
  468. dataset_id=dataset.id,
  469. mode=process_rule["mode"],
  470. rules=json.dumps(process_rule["rules"]),
  471. created_by=account.id
  472. )
  473. elif process_rule["mode"] == "automatic":
  474. dataset_process_rule = DatasetProcessRule(
  475. dataset_id=dataset.id,
  476. mode=process_rule["mode"],
  477. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  478. created_by=account.id
  479. )
  480. db.session.add(dataset_process_rule)
  481. db.session.commit()
  482. position = DocumentService.get_documents_position(dataset.id)
  483. document_ids = []
  484. if document_data["data_source"]["type"] == "upload_file":
  485. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  486. for file_id in upload_file_list:
  487. file = db.session.query(UploadFile).filter(
  488. UploadFile.tenant_id == dataset.tenant_id,
  489. UploadFile.id == file_id
  490. ).first()
  491. # raise error if file not found
  492. if not file:
  493. raise FileNotExistsError()
  494. file_name = file.name
  495. data_source_info = {
  496. "upload_file_id": file_id,
  497. }
  498. document = DocumentService.build_document(dataset, dataset_process_rule.id,
  499. document_data["data_source"]["type"],
  500. document_data["doc_form"],
  501. document_data["doc_language"],
  502. data_source_info, created_from, position,
  503. account, file_name, batch)
  504. db.session.add(document)
  505. db.session.flush()
  506. document_ids.append(document.id)
  507. documents.append(document)
  508. position += 1
  509. elif document_data["data_source"]["type"] == "notion_import":
  510. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  511. exist_page_ids = []
  512. exist_document = dict()
  513. documents = Document.query.filter_by(
  514. dataset_id=dataset.id,
  515. tenant_id=current_user.current_tenant_id,
  516. data_source_type='notion_import',
  517. enabled=True
  518. ).all()
  519. if documents:
  520. for document in documents:
  521. data_source_info = json.loads(document.data_source_info)
  522. exist_page_ids.append(data_source_info['notion_page_id'])
  523. exist_document[data_source_info['notion_page_id']] = document.id
  524. for notion_info in notion_info_list:
  525. workspace_id = notion_info['workspace_id']
  526. data_source_binding = DataSourceBinding.query.filter(
  527. db.and_(
  528. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  529. DataSourceBinding.provider == 'notion',
  530. DataSourceBinding.disabled == False,
  531. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  532. )
  533. ).first()
  534. if not data_source_binding:
  535. raise ValueError('Data source binding not found.')
  536. for page in notion_info['pages']:
  537. if page['page_id'] not in exist_page_ids:
  538. data_source_info = {
  539. "notion_workspace_id": workspace_id,
  540. "notion_page_id": page['page_id'],
  541. "notion_page_icon": page['page_icon'],
  542. "type": page['type']
  543. }
  544. document = DocumentService.build_document(dataset, dataset_process_rule.id,
  545. document_data["data_source"]["type"],
  546. document_data["doc_form"],
  547. document_data["doc_language"],
  548. data_source_info, created_from, position,
  549. account, page['page_name'], batch)
  550. db.session.add(document)
  551. db.session.flush()
  552. document_ids.append(document.id)
  553. documents.append(document)
  554. position += 1
  555. else:
  556. exist_document.pop(page['page_id'])
  557. # delete not selected documents
  558. if len(exist_document) > 0:
  559. clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
  560. db.session.commit()
  561. # trigger async task
  562. document_indexing_task.delay(dataset.id, document_ids)
  563. return documents, batch
  564. @staticmethod
  565. def build_document(dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,
  566. document_language: str, data_source_info: dict, created_from: str, position: int,
  567. account: Account,
  568. name: str, batch: str):
  569. document = Document(
  570. tenant_id=dataset.tenant_id,
  571. dataset_id=dataset.id,
  572. position=position,
  573. data_source_type=data_source_type,
  574. data_source_info=json.dumps(data_source_info),
  575. dataset_process_rule_id=process_rule_id,
  576. batch=batch,
  577. name=name,
  578. created_from=created_from,
  579. created_by=account.id,
  580. doc_form=document_form,
  581. doc_language=document_language
  582. )
  583. return document
  584. @staticmethod
  585. def get_tenant_documents_count():
  586. documents_count = Document.query.filter(Document.completed_at.isnot(None),
  587. Document.enabled == True,
  588. Document.archived == False,
  589. Document.tenant_id == current_user.current_tenant_id).count()
  590. return documents_count
  591. @staticmethod
  592. def update_document_with_dataset_id(dataset: Dataset, document_data: dict,
  593. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  594. created_from: str = 'web'):
  595. DatasetService.check_dataset_model_setting(dataset)
  596. document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
  597. if document.display_status != 'available':
  598. raise ValueError("Document is not available")
  599. # update document name
  600. if 'name' in document_data and document_data['name']:
  601. document.name = document_data['name']
  602. # save process rule
  603. if 'process_rule' in document_data and document_data['process_rule']:
  604. process_rule = document_data["process_rule"]
  605. if process_rule["mode"] == "custom":
  606. dataset_process_rule = DatasetProcessRule(
  607. dataset_id=dataset.id,
  608. mode=process_rule["mode"],
  609. rules=json.dumps(process_rule["rules"]),
  610. created_by=account.id
  611. )
  612. elif process_rule["mode"] == "automatic":
  613. dataset_process_rule = DatasetProcessRule(
  614. dataset_id=dataset.id,
  615. mode=process_rule["mode"],
  616. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  617. created_by=account.id
  618. )
  619. db.session.add(dataset_process_rule)
  620. db.session.commit()
  621. document.dataset_process_rule_id = dataset_process_rule.id
  622. # update document data source
  623. if 'data_source' in document_data and document_data['data_source']:
  624. file_name = ''
  625. data_source_info = {}
  626. if document_data["data_source"]["type"] == "upload_file":
  627. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  628. for file_id in upload_file_list:
  629. file = db.session.query(UploadFile).filter(
  630. UploadFile.tenant_id == dataset.tenant_id,
  631. UploadFile.id == file_id
  632. ).first()
  633. # raise error if file not found
  634. if not file:
  635. raise FileNotExistsError()
  636. file_name = file.name
  637. data_source_info = {
  638. "upload_file_id": file_id,
  639. }
  640. elif document_data["data_source"]["type"] == "notion_import":
  641. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  642. for notion_info in notion_info_list:
  643. workspace_id = notion_info['workspace_id']
  644. data_source_binding = DataSourceBinding.query.filter(
  645. db.and_(
  646. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  647. DataSourceBinding.provider == 'notion',
  648. DataSourceBinding.disabled == False,
  649. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  650. )
  651. ).first()
  652. if not data_source_binding:
  653. raise ValueError('Data source binding not found.')
  654. for page in notion_info['pages']:
  655. data_source_info = {
  656. "notion_workspace_id": workspace_id,
  657. "notion_page_id": page['page_id'],
  658. "notion_page_icon": page['page_icon'],
  659. "type": page['type']
  660. }
  661. document.data_source_type = document_data["data_source"]["type"]
  662. document.data_source_info = json.dumps(data_source_info)
  663. document.name = file_name
  664. # update document to be waiting
  665. document.indexing_status = 'waiting'
  666. document.completed_at = None
  667. document.processing_started_at = None
  668. document.parsing_completed_at = None
  669. document.cleaning_completed_at = None
  670. document.splitting_completed_at = None
  671. document.updated_at = datetime.datetime.utcnow()
  672. document.created_from = created_from
  673. document.doc_form = document_data['doc_form']
  674. db.session.add(document)
  675. db.session.commit()
  676. # update document segment
  677. update_params = {
  678. DocumentSegment.status: 're_segment'
  679. }
  680. DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
  681. db.session.commit()
  682. # trigger async task
  683. document_indexing_update_task.delay(document.dataset_id, document.id)
  684. return document
  685. @staticmethod
  686. def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
  687. features = FeatureService.get_features(current_user.current_tenant_id)
  688. if features.billing.enabled:
  689. count = 0
  690. if document_data["data_source"]["type"] == "upload_file":
  691. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  692. count = len(upload_file_list)
  693. elif document_data["data_source"]["type"] == "notion_import":
  694. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  695. for notion_info in notion_info_list:
  696. count = count + len(notion_info['pages'])
  697. batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])
  698. if count > batch_upload_limit:
  699. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  700. embedding_model = None
  701. dataset_collection_binding_id = None
  702. retrieval_model = None
  703. if document_data['indexing_technique'] == 'high_quality':
  704. model_manager = ModelManager()
  705. embedding_model = model_manager.get_default_model_instance(
  706. tenant_id=current_user.current_tenant_id,
  707. model_type=ModelType.TEXT_EMBEDDING
  708. )
  709. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  710. embedding_model.provider,
  711. embedding_model.model
  712. )
  713. dataset_collection_binding_id = dataset_collection_binding.id
  714. if 'retrieval_model' in document_data and document_data['retrieval_model']:
  715. retrieval_model = document_data['retrieval_model']
  716. else:
  717. default_retrieval_model = {
  718. 'search_method': 'semantic_search',
  719. 'reranking_enable': False,
  720. 'reranking_model': {
  721. 'reranking_provider_name': '',
  722. 'reranking_model_name': ''
  723. },
  724. 'top_k': 2,
  725. 'score_threshold_enabled': False
  726. }
  727. retrieval_model = default_retrieval_model
  728. # save dataset
  729. dataset = Dataset(
  730. tenant_id=tenant_id,
  731. name='',
  732. data_source_type=document_data["data_source"]["type"],
  733. indexing_technique=document_data["indexing_technique"],
  734. created_by=account.id,
  735. embedding_model=embedding_model.model if embedding_model else None,
  736. embedding_model_provider=embedding_model.provider if embedding_model else None,
  737. collection_binding_id=dataset_collection_binding_id,
  738. retrieval_model=retrieval_model
  739. )
  740. db.session.add(dataset)
  741. db.session.flush()
  742. documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
  743. cut_length = 18
  744. cut_name = documents[0].name[:cut_length]
  745. dataset.name = cut_name + '...'
  746. dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name
  747. db.session.commit()
  748. return dataset, documents, batch
  749. @classmethod
  750. def document_create_args_validate(cls, args: dict):
  751. if 'original_document_id' not in args or not args['original_document_id']:
  752. DocumentService.data_source_args_validate(args)
  753. DocumentService.process_rule_args_validate(args)
  754. else:
  755. if ('data_source' not in args and not args['data_source']) \
  756. and ('process_rule' not in args and not args['process_rule']):
  757. raise ValueError("Data source or Process rule is required")
  758. else:
  759. if 'data_source' in args and args['data_source']:
  760. DocumentService.data_source_args_validate(args)
  761. if 'process_rule' in args and args['process_rule']:
  762. DocumentService.process_rule_args_validate(args)
  763. @classmethod
  764. def data_source_args_validate(cls, args: dict):
  765. if 'data_source' not in args or not args['data_source']:
  766. raise ValueError("Data source is required")
  767. if not isinstance(args['data_source'], dict):
  768. raise ValueError("Data source is invalid")
  769. if 'type' not in args['data_source'] or not args['data_source']['type']:
  770. raise ValueError("Data source type is required")
  771. if args['data_source']['type'] not in Document.DATA_SOURCES:
  772. raise ValueError("Data source type is invalid")
  773. if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:
  774. raise ValueError("Data source info is required")
  775. if args['data_source']['type'] == 'upload_file':
  776. if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  777. 'file_info_list']:
  778. raise ValueError("File source info is required")
  779. if args['data_source']['type'] == 'notion_import':
  780. if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  781. 'notion_info_list']:
  782. raise ValueError("Notion source info is required")
  783. @classmethod
  784. def process_rule_args_validate(cls, args: dict):
  785. if 'process_rule' not in args or not args['process_rule']:
  786. raise ValueError("Process rule is required")
  787. if not isinstance(args['process_rule'], dict):
  788. raise ValueError("Process rule is invalid")
  789. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  790. raise ValueError("Process rule mode is required")
  791. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  792. raise ValueError("Process rule mode is invalid")
  793. if args['process_rule']['mode'] == 'automatic':
  794. args['process_rule']['rules'] = {}
  795. else:
  796. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  797. raise ValueError("Process rule rules is required")
  798. if not isinstance(args['process_rule']['rules'], dict):
  799. raise ValueError("Process rule rules is invalid")
  800. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  801. or args['process_rule']['rules']['pre_processing_rules'] is None:
  802. raise ValueError("Process rule pre_processing_rules is required")
  803. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  804. raise ValueError("Process rule pre_processing_rules is invalid")
  805. unique_pre_processing_rule_dicts = {}
  806. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  807. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  808. raise ValueError("Process rule pre_processing_rules id is required")
  809. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  810. raise ValueError("Process rule pre_processing_rules id is invalid")
  811. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  812. raise ValueError("Process rule pre_processing_rules enabled is required")
  813. if not isinstance(pre_processing_rule['enabled'], bool):
  814. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  815. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  816. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  817. if 'segmentation' not in args['process_rule']['rules'] \
  818. or args['process_rule']['rules']['segmentation'] is None:
  819. raise ValueError("Process rule segmentation is required")
  820. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  821. raise ValueError("Process rule segmentation is invalid")
  822. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  823. or not args['process_rule']['rules']['segmentation']['separator']:
  824. raise ValueError("Process rule segmentation separator is required")
  825. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  826. raise ValueError("Process rule segmentation separator is invalid")
  827. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  828. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  829. raise ValueError("Process rule segmentation max_tokens is required")
  830. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  831. raise ValueError("Process rule segmentation max_tokens is invalid")
  832. @classmethod
  833. def estimate_args_validate(cls, args: dict):
  834. if 'info_list' not in args or not args['info_list']:
  835. raise ValueError("Data source info is required")
  836. if not isinstance(args['info_list'], dict):
  837. raise ValueError("Data info is invalid")
  838. if 'process_rule' not in args or not args['process_rule']:
  839. raise ValueError("Process rule is required")
  840. if not isinstance(args['process_rule'], dict):
  841. raise ValueError("Process rule is invalid")
  842. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  843. raise ValueError("Process rule mode is required")
  844. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  845. raise ValueError("Process rule mode is invalid")
  846. if args['process_rule']['mode'] == 'automatic':
  847. args['process_rule']['rules'] = {}
  848. else:
  849. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  850. raise ValueError("Process rule rules is required")
  851. if not isinstance(args['process_rule']['rules'], dict):
  852. raise ValueError("Process rule rules is invalid")
  853. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  854. or args['process_rule']['rules']['pre_processing_rules'] is None:
  855. raise ValueError("Process rule pre_processing_rules is required")
  856. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  857. raise ValueError("Process rule pre_processing_rules is invalid")
  858. unique_pre_processing_rule_dicts = {}
  859. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  860. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  861. raise ValueError("Process rule pre_processing_rules id is required")
  862. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  863. raise ValueError("Process rule pre_processing_rules id is invalid")
  864. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  865. raise ValueError("Process rule pre_processing_rules enabled is required")
  866. if not isinstance(pre_processing_rule['enabled'], bool):
  867. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  868. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  869. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  870. if 'segmentation' not in args['process_rule']['rules'] \
  871. or args['process_rule']['rules']['segmentation'] is None:
  872. raise ValueError("Process rule segmentation is required")
  873. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  874. raise ValueError("Process rule segmentation is invalid")
  875. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  876. or not args['process_rule']['rules']['segmentation']['separator']:
  877. raise ValueError("Process rule segmentation separator is required")
  878. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  879. raise ValueError("Process rule segmentation separator is invalid")
  880. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  881. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  882. raise ValueError("Process rule segmentation max_tokens is required")
  883. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  884. raise ValueError("Process rule segmentation max_tokens is invalid")
  885. class SegmentService:
  886. @classmethod
  887. def segment_create_args_validate(cls, args: dict, document: Document):
  888. if document.doc_form == 'qa_model':
  889. if 'answer' not in args or not args['answer']:
  890. raise ValueError("Answer is required")
  891. if not args['answer'].strip():
  892. raise ValueError("Answer is empty")
  893. if 'content' not in args or not args['content'] or not args['content'].strip():
  894. raise ValueError("Content is empty")
  895. @classmethod
  896. def create_segment(cls, args: dict, document: Document, dataset: Dataset):
  897. content = args['content']
  898. doc_id = str(uuid.uuid4())
  899. segment_hash = helper.generate_text_hash(content)
  900. tokens = 0
  901. if dataset.indexing_technique == 'high_quality':
  902. model_manager = ModelManager()
  903. embedding_model = model_manager.get_model_instance(
  904. tenant_id=current_user.current_tenant_id,
  905. provider=dataset.embedding_model_provider,
  906. model_type=ModelType.TEXT_EMBEDDING,
  907. model=dataset.embedding_model
  908. )
  909. # calc embedding use tokens
  910. model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
  911. tokens = model_type_instance.get_num_tokens(
  912. model=embedding_model.model,
  913. credentials=embedding_model.credentials,
  914. texts=[content]
  915. )
  916. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  917. DocumentSegment.document_id == document.id
  918. ).scalar()
  919. segment_document = DocumentSegment(
  920. tenant_id=current_user.current_tenant_id,
  921. dataset_id=document.dataset_id,
  922. document_id=document.id,
  923. index_node_id=doc_id,
  924. index_node_hash=segment_hash,
  925. position=max_position + 1 if max_position else 1,
  926. content=content,
  927. word_count=len(content),
  928. tokens=tokens,
  929. status='completed',
  930. indexing_at=datetime.datetime.utcnow(),
  931. completed_at=datetime.datetime.utcnow(),
  932. created_by=current_user.id
  933. )
  934. if document.doc_form == 'qa_model':
  935. segment_document.answer = args['answer']
  936. db.session.add(segment_document)
  937. db.session.commit()
  938. # save vector index
  939. try:
  940. VectorService.create_segment_vector(args['keywords'], segment_document, dataset)
  941. except Exception as e:
  942. logging.exception("create segment index failed")
  943. segment_document.enabled = False
  944. segment_document.disabled_at = datetime.datetime.utcnow()
  945. segment_document.status = 'error'
  946. segment_document.error = str(e)
  947. db.session.commit()
  948. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
  949. return segment
  950. @classmethod
  951. def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
  952. embedding_model = None
  953. if dataset.indexing_technique == 'high_quality':
  954. model_manager = ModelManager()
  955. embedding_model = model_manager.get_model_instance(
  956. tenant_id=current_user.current_tenant_id,
  957. provider=dataset.embedding_model_provider,
  958. model_type=ModelType.TEXT_EMBEDDING,
  959. model=dataset.embedding_model
  960. )
  961. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  962. DocumentSegment.document_id == document.id
  963. ).scalar()
  964. pre_segment_data_list = []
  965. segment_data_list = []
  966. for segment_item in segments:
  967. content = segment_item['content']
  968. doc_id = str(uuid.uuid4())
  969. segment_hash = helper.generate_text_hash(content)
  970. tokens = 0
  971. if dataset.indexing_technique == 'high_quality' and embedding_model:
  972. # calc embedding use tokens
  973. model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
  974. tokens = model_type_instance.get_num_tokens(
  975. model=embedding_model.model,
  976. credentials=embedding_model.credentials,
  977. texts=[content]
  978. )
  979. segment_document = DocumentSegment(
  980. tenant_id=current_user.current_tenant_id,
  981. dataset_id=document.dataset_id,
  982. document_id=document.id,
  983. index_node_id=doc_id,
  984. index_node_hash=segment_hash,
  985. position=max_position + 1 if max_position else 1,
  986. content=content,
  987. word_count=len(content),
  988. tokens=tokens,
  989. status='completed',
  990. indexing_at=datetime.datetime.utcnow(),
  991. completed_at=datetime.datetime.utcnow(),
  992. created_by=current_user.id
  993. )
  994. if document.doc_form == 'qa_model':
  995. segment_document.answer = segment_item['answer']
  996. db.session.add(segment_document)
  997. segment_data_list.append(segment_document)
  998. pre_segment_data = {
  999. 'segment': segment_document,
  1000. 'keywords': segment_item['keywords']
  1001. }
  1002. pre_segment_data_list.append(pre_segment_data)
  1003. try:
  1004. # save vector index
  1005. VectorService.multi_create_segment_vector(pre_segment_data_list, dataset)
  1006. except Exception as e:
  1007. logging.exception("create segment index failed")
  1008. for segment_document in segment_data_list:
  1009. segment_document.enabled = False
  1010. segment_document.disabled_at = datetime.datetime.utcnow()
  1011. segment_document.status = 'error'
  1012. segment_document.error = str(e)
  1013. db.session.commit()
  1014. return segment_data_list
  1015. @classmethod
  1016. def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):
  1017. indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
  1018. cache_result = redis_client.get(indexing_cache_key)
  1019. if cache_result is not None:
  1020. raise ValueError("Segment is indexing, please try again later")
  1021. try:
  1022. content = args['content']
  1023. if segment.content == content:
  1024. if document.doc_form == 'qa_model':
  1025. segment.answer = args['answer']
  1026. if 'keywords' in args and args['keywords']:
  1027. segment.keywords = args['keywords']
  1028. if 'enabled' in args and args['enabled'] is not None:
  1029. segment.enabled = args['enabled']
  1030. db.session.add(segment)
  1031. db.session.commit()
  1032. # update segment index task
  1033. if args['keywords']:
  1034. kw_index = IndexBuilder.get_index(dataset, 'economy')
  1035. # delete from keyword index
  1036. kw_index.delete_by_ids([segment.index_node_id])
  1037. # save keyword index
  1038. kw_index.update_segment_keywords_index(segment.index_node_id, segment.keywords)
  1039. else:
  1040. segment_hash = helper.generate_text_hash(content)
  1041. tokens = 0
  1042. if dataset.indexing_technique == 'high_quality':
  1043. model_manager = ModelManager()
  1044. embedding_model = model_manager.get_model_instance(
  1045. tenant_id=current_user.current_tenant_id,
  1046. provider=dataset.embedding_model_provider,
  1047. model_type=ModelType.TEXT_EMBEDDING,
  1048. model=dataset.embedding_model
  1049. )
  1050. # calc embedding use tokens
  1051. model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
  1052. tokens = model_type_instance.get_num_tokens(
  1053. model=embedding_model.model,
  1054. credentials=embedding_model.credentials,
  1055. texts=[content]
  1056. )
  1057. segment.content = content
  1058. segment.index_node_hash = segment_hash
  1059. segment.word_count = len(content)
  1060. segment.tokens = tokens
  1061. segment.status = 'completed'
  1062. segment.indexing_at = datetime.datetime.utcnow()
  1063. segment.completed_at = datetime.datetime.utcnow()
  1064. segment.updated_by = current_user.id
  1065. segment.updated_at = datetime.datetime.utcnow()
  1066. if document.doc_form == 'qa_model':
  1067. segment.answer = args['answer']
  1068. db.session.add(segment)
  1069. db.session.commit()
  1070. # update segment vector index
  1071. VectorService.update_segment_vector(args['keywords'], segment, dataset)
  1072. except Exception as e:
  1073. logging.exception("update segment index failed")
  1074. segment.enabled = False
  1075. segment.disabled_at = datetime.datetime.utcnow()
  1076. segment.status = 'error'
  1077. segment.error = str(e)
  1078. db.session.commit()
  1079. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
  1080. return segment
  1081. @classmethod
  1082. def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
  1083. indexing_cache_key = 'segment_{}_delete_indexing'.format(segment.id)
  1084. cache_result = redis_client.get(indexing_cache_key)
  1085. if cache_result is not None:
  1086. raise ValueError("Segment is deleting.")
  1087. # enabled segment need to delete index
  1088. if segment.enabled:
  1089. # send delete segment index task
  1090. redis_client.setex(indexing_cache_key, 600, 1)
  1091. delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)
  1092. db.session.delete(segment)
  1093. db.session.commit()
  1094. class DatasetCollectionBindingService:
  1095. @classmethod
  1096. def get_dataset_collection_binding(cls, provider_name: str, model_name: str,
  1097. collection_type: str = 'dataset') -> DatasetCollectionBinding:
  1098. dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
  1099. filter(DatasetCollectionBinding.provider_name == provider_name,
  1100. DatasetCollectionBinding.model_name == model_name,
  1101. DatasetCollectionBinding.type == collection_type). \
  1102. order_by(DatasetCollectionBinding.created_at). \
  1103. first()
  1104. if not dataset_collection_binding:
  1105. dataset_collection_binding = DatasetCollectionBinding(
  1106. provider_name=provider_name,
  1107. model_name=model_name,
  1108. collection_name="Vector_index_" + str(uuid.uuid4()).replace("-", "_") + '_Node',
  1109. type=collection_type
  1110. )
  1111. db.session.add(dataset_collection_binding)
  1112. db.session.commit()
  1113. return dataset_collection_binding
  1114. @classmethod
  1115. def get_dataset_collection_binding_by_id_and_type(cls, collection_binding_id: str,
  1116. collection_type: str = 'dataset') -> DatasetCollectionBinding:
  1117. dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
  1118. filter(DatasetCollectionBinding.id == collection_binding_id,
  1119. DatasetCollectionBinding.type == collection_type). \
  1120. order_by(DatasetCollectionBinding.created_at). \
  1121. first()
  1122. return dataset_collection_binding