Charles 94d68b6a08 upgrade deepseek params (#6744) 8 hónapja
..
configs 8dd68e2034 fix(api/core/moderation/output_moderation.py): Fix config call. (#6769) 8 hónapja
constants 5e6fc58db3 Feat/environment variables in workflow (#6515) 9 hónapja
contexts 5e6fc58db3 Feat/environment variables in workflow (#6515) 9 hónapja
controllers ecb9c311b5 chore: make prompt generator max tokens configurable (#6693) 9 hónapja
core 94d68b6a08 upgrade deepseek params (#6744) 8 hónapja
docker 5236cb1888 fix: kill signal is not passed to the main process (#6159) 9 hónapja
events d320d1468d Feat/delete file when clean document (#5882) 9 hónapja
extensions 349ec0db77 fix tencent_cos_storage image-preview error is not a byte (#6652) 9 hónapja
fields 55c2b61921 fix(api/fields/workflow_fields.py): Add check in environment variables (#6621) 9 hónapja
libs 617847e3c0 fix(api/services/app_generate_service.py): Remove wrong type hints. (#6535) 9 hónapja
migrations e23461c837 Fix/6615 40 varchar limit on DatasetCollectionBinding and Embedding model name (#6723) 9 hónapja
models e23461c837 Fix/6615 40 varchar limit on DatasetCollectionBinding and Embedding model name (#6723) 9 hónapja
schedule 5e6fc58db3 Feat/environment variables in workflow (#6515) 9 hónapja
services 05141ede16 chore: optimize asynchronous deletion performance of app related data (#6634) 9 hónapja
tasks 0625db0bf5 chore: optimize asynchronous workflow deletion performance of app related data (#6639) 9 hónapja
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) 9 hónapja
tests c9ff0e3961 Add model hunyuan-embedding (#6657) 8 hónapja
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) 10 hónapja
.env.example ecb9c311b5 chore: make prompt generator max tokens configurable (#6693) 9 hónapja
Dockerfile 9b7c74a5d9 chore: skip pip upgrade preparation in api dockerfile (#5999) 9 hónapja
README.md fb5e3662d5 Chores: add missing profile for middleware docker compose cmd and fix ssrf-proxy doc link (#6372) 9 hónapja
app.py 5e6fc58db3 Feat/environment variables in workflow (#6515) 9 hónapja
commands.py 7c70eb87bc feat: support AnalyticDB vector store (#5586) 9 hónapja
poetry.lock cf258b7a67 add xlsx support hyperlink extract (#6722) 9 hónapja
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) 10 hónapja
pyproject.toml cf258b7a67 add xlsx support hyperlink extract (#6722) 9 hónapja

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh