segment.py 9.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204
  1. from flask_login import current_user # type: ignore
  2. from flask_restful import marshal, reqparse # type: ignore
  3. from werkzeug.exceptions import NotFound
  4. from controllers.service_api import api
  5. from controllers.service_api.app.error import ProviderNotInitializeError
  6. from controllers.service_api.wraps import (
  7. DatasetApiResource,
  8. cloud_edition_billing_knowledge_limit_check,
  9. cloud_edition_billing_resource_check,
  10. )
  11. from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
  12. from core.model_manager import ModelManager
  13. from core.model_runtime.entities.model_entities import ModelType
  14. from extensions.ext_database import db
  15. from fields.segment_fields import segment_fields
  16. from models.dataset import Dataset, DocumentSegment
  17. from services.dataset_service import DatasetService, DocumentService, SegmentService
  18. from services.entities.knowledge_entities.knowledge_entities import SegmentUpdateArgs
  19. class SegmentApi(DatasetApiResource):
  20. """Resource for segments."""
  21. @cloud_edition_billing_resource_check("vector_space", "dataset")
  22. @cloud_edition_billing_knowledge_limit_check("add_segment", "dataset")
  23. def post(self, tenant_id, dataset_id, document_id):
  24. """Create single segment."""
  25. # check dataset
  26. dataset_id = str(dataset_id)
  27. tenant_id = str(tenant_id)
  28. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  29. if not dataset:
  30. raise NotFound("Dataset not found.")
  31. # check document
  32. document_id = str(document_id)
  33. document = DocumentService.get_document(dataset.id, document_id)
  34. if not document:
  35. raise NotFound("Document not found.")
  36. if document.indexing_status != "completed":
  37. raise NotFound("Document is not completed.")
  38. if not document.enabled:
  39. raise NotFound("Document is disabled.")
  40. # check embedding model setting
  41. if dataset.indexing_technique == "high_quality":
  42. try:
  43. model_manager = ModelManager()
  44. model_manager.get_model_instance(
  45. tenant_id=current_user.current_tenant_id,
  46. provider=dataset.embedding_model_provider,
  47. model_type=ModelType.TEXT_EMBEDDING,
  48. model=dataset.embedding_model,
  49. )
  50. except LLMBadRequestError:
  51. raise ProviderNotInitializeError(
  52. "No Embedding Model available. Please configure a valid provider "
  53. "in the Settings -> Model Provider."
  54. )
  55. except ProviderTokenNotInitError as ex:
  56. raise ProviderNotInitializeError(ex.description)
  57. # validate args
  58. parser = reqparse.RequestParser()
  59. parser.add_argument("segments", type=list, required=False, nullable=True, location="json")
  60. args = parser.parse_args()
  61. if args["segments"] is not None:
  62. for args_item in args["segments"]:
  63. SegmentService.segment_create_args_validate(args_item, document)
  64. segments = SegmentService.multi_create_segment(args["segments"], document, dataset)
  65. return {"data": marshal(segments, segment_fields), "doc_form": document.doc_form}, 200
  66. else:
  67. return {"error": "Segments is required"}, 400
  68. def get(self, tenant_id, dataset_id, document_id):
  69. """Create single segment."""
  70. # check dataset
  71. dataset_id = str(dataset_id)
  72. tenant_id = str(tenant_id)
  73. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  74. if not dataset:
  75. raise NotFound("Dataset not found.")
  76. # check document
  77. document_id = str(document_id)
  78. document = DocumentService.get_document(dataset.id, document_id)
  79. if not document:
  80. raise NotFound("Document not found.")
  81. # check embedding model setting
  82. if dataset.indexing_technique == "high_quality":
  83. try:
  84. model_manager = ModelManager()
  85. model_manager.get_model_instance(
  86. tenant_id=current_user.current_tenant_id,
  87. provider=dataset.embedding_model_provider,
  88. model_type=ModelType.TEXT_EMBEDDING,
  89. model=dataset.embedding_model,
  90. )
  91. except LLMBadRequestError:
  92. raise ProviderNotInitializeError(
  93. "No Embedding Model available. Please configure a valid provider "
  94. "in the Settings -> Model Provider."
  95. )
  96. except ProviderTokenNotInitError as ex:
  97. raise ProviderNotInitializeError(ex.description)
  98. parser = reqparse.RequestParser()
  99. parser.add_argument("status", type=str, action="append", default=[], location="args")
  100. parser.add_argument("keyword", type=str, default=None, location="args")
  101. args = parser.parse_args()
  102. status_list = args["status"]
  103. keyword = args["keyword"]
  104. query = DocumentSegment.query.filter(
  105. DocumentSegment.document_id == str(document_id), DocumentSegment.tenant_id == current_user.current_tenant_id
  106. )
  107. if status_list:
  108. query = query.filter(DocumentSegment.status.in_(status_list))
  109. if keyword:
  110. query = query.where(DocumentSegment.content.ilike(f"%{keyword}%"))
  111. total = query.count()
  112. segments = query.order_by(DocumentSegment.position).all()
  113. return {"data": marshal(segments, segment_fields), "doc_form": document.doc_form, "total": total}, 200
  114. class DatasetSegmentApi(DatasetApiResource):
  115. def delete(self, tenant_id, dataset_id, document_id, segment_id):
  116. # check dataset
  117. dataset_id = str(dataset_id)
  118. tenant_id = str(tenant_id)
  119. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  120. if not dataset:
  121. raise NotFound("Dataset not found.")
  122. # check user's model setting
  123. DatasetService.check_dataset_model_setting(dataset)
  124. # check document
  125. document_id = str(document_id)
  126. document = DocumentService.get_document(dataset_id, document_id)
  127. if not document:
  128. raise NotFound("Document not found.")
  129. # check segment
  130. segment = DocumentSegment.query.filter(
  131. DocumentSegment.id == str(segment_id), DocumentSegment.tenant_id == current_user.current_tenant_id
  132. ).first()
  133. if not segment:
  134. raise NotFound("Segment not found.")
  135. SegmentService.delete_segment(segment, document, dataset)
  136. return {"result": "success"}, 200
  137. @cloud_edition_billing_resource_check("vector_space", "dataset")
  138. def post(self, tenant_id, dataset_id, document_id, segment_id):
  139. # check dataset
  140. dataset_id = str(dataset_id)
  141. tenant_id = str(tenant_id)
  142. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  143. if not dataset:
  144. raise NotFound("Dataset not found.")
  145. # check user's model setting
  146. DatasetService.check_dataset_model_setting(dataset)
  147. # check document
  148. document_id = str(document_id)
  149. document = DocumentService.get_document(dataset_id, document_id)
  150. if not document:
  151. raise NotFound("Document not found.")
  152. if dataset.indexing_technique == "high_quality":
  153. # check embedding model setting
  154. try:
  155. model_manager = ModelManager()
  156. model_manager.get_model_instance(
  157. tenant_id=current_user.current_tenant_id,
  158. provider=dataset.embedding_model_provider,
  159. model_type=ModelType.TEXT_EMBEDDING,
  160. model=dataset.embedding_model,
  161. )
  162. except LLMBadRequestError:
  163. raise ProviderNotInitializeError(
  164. "No Embedding Model available. Please configure a valid provider "
  165. "in the Settings -> Model Provider."
  166. )
  167. except ProviderTokenNotInitError as ex:
  168. raise ProviderNotInitializeError(ex.description)
  169. # check segment
  170. segment_id = str(segment_id)
  171. segment = DocumentSegment.query.filter(
  172. DocumentSegment.id == str(segment_id), DocumentSegment.tenant_id == current_user.current_tenant_id
  173. ).first()
  174. if not segment:
  175. raise NotFound("Segment not found.")
  176. # validate args
  177. parser = reqparse.RequestParser()
  178. parser.add_argument("segment", type=dict, required=False, nullable=True, location="json")
  179. args = parser.parse_args()
  180. SegmentService.segment_create_args_validate(args["segment"], document)
  181. segment = SegmentService.update_segment(SegmentUpdateArgs(**args["segment"]), segment, document, dataset)
  182. return {"data": marshal(segment, segment_fields), "doc_form": document.doc_form}, 200
  183. api.add_resource(SegmentApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments")
  184. api.add_resource(
  185. DatasetSegmentApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>"
  186. )