retrieval_service.py 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243
  1. import threading
  2. from typing import Optional
  3. from flask import Flask, current_app
  4. from core.rag.data_post_processor.data_post_processor import DataPostProcessor
  5. from core.rag.datasource.keyword.keyword_factory import Keyword
  6. from core.rag.datasource.vdb.vector_factory import Vector
  7. from core.rag.rerank.rerank_type import RerankMode
  8. from core.rag.retrieval.retrieval_methods import RetrievalMethod
  9. from extensions.ext_database import db
  10. from models.dataset import Dataset
  11. from services.external_knowledge_service import ExternalDatasetService
  12. default_retrieval_model = {
  13. "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
  14. "reranking_enable": False,
  15. "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
  16. "top_k": 2,
  17. "score_threshold_enabled": False,
  18. }
  19. class RetrievalService:
  20. @classmethod
  21. def retrieve(
  22. cls,
  23. retrieval_method: str,
  24. dataset_id: str,
  25. query: str,
  26. top_k: int,
  27. score_threshold: Optional[float] = 0.0,
  28. reranking_model: Optional[dict] = None,
  29. reranking_mode: Optional[str] = "reranking_model",
  30. weights: Optional[dict] = None,
  31. ):
  32. if not query:
  33. return []
  34. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  35. if not dataset:
  36. return []
  37. if not dataset or dataset.available_document_count == 0 or dataset.available_segment_count == 0:
  38. return []
  39. all_documents = []
  40. threads = []
  41. exceptions = []
  42. # retrieval_model source with keyword
  43. if retrieval_method == "keyword_search":
  44. keyword_thread = threading.Thread(
  45. target=RetrievalService.keyword_search,
  46. kwargs={
  47. "flask_app": current_app._get_current_object(),
  48. "dataset_id": dataset_id,
  49. "query": query,
  50. "top_k": top_k,
  51. "all_documents": all_documents,
  52. "exceptions": exceptions,
  53. },
  54. )
  55. threads.append(keyword_thread)
  56. keyword_thread.start()
  57. # retrieval_model source with semantic
  58. if RetrievalMethod.is_support_semantic_search(retrieval_method):
  59. embedding_thread = threading.Thread(
  60. target=RetrievalService.embedding_search,
  61. kwargs={
  62. "flask_app": current_app._get_current_object(),
  63. "dataset_id": dataset_id,
  64. "query": query,
  65. "top_k": top_k,
  66. "score_threshold": score_threshold,
  67. "reranking_model": reranking_model,
  68. "all_documents": all_documents,
  69. "retrieval_method": retrieval_method,
  70. "exceptions": exceptions,
  71. },
  72. )
  73. threads.append(embedding_thread)
  74. embedding_thread.start()
  75. # retrieval source with full text
  76. if RetrievalMethod.is_support_fulltext_search(retrieval_method):
  77. full_text_index_thread = threading.Thread(
  78. target=RetrievalService.full_text_index_search,
  79. kwargs={
  80. "flask_app": current_app._get_current_object(),
  81. "dataset_id": dataset_id,
  82. "query": query,
  83. "retrieval_method": retrieval_method,
  84. "score_threshold": score_threshold,
  85. "top_k": top_k,
  86. "reranking_model": reranking_model,
  87. "all_documents": all_documents,
  88. "exceptions": exceptions,
  89. },
  90. )
  91. threads.append(full_text_index_thread)
  92. full_text_index_thread.start()
  93. for thread in threads:
  94. thread.join()
  95. if exceptions:
  96. exception_message = ";\n".join(exceptions)
  97. raise ValueError(exception_message)
  98. if retrieval_method == RetrievalMethod.HYBRID_SEARCH.value:
  99. data_post_processor = DataPostProcessor(
  100. str(dataset.tenant_id), reranking_mode, reranking_model, weights, False
  101. )
  102. all_documents = data_post_processor.invoke(
  103. query=query,
  104. documents=all_documents,
  105. score_threshold=score_threshold,
  106. top_n=top_k,
  107. )
  108. return all_documents
  109. @classmethod
  110. def external_retrieve(cls, dataset_id: str, query: str, external_retrieval_model: Optional[dict] = None):
  111. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  112. if not dataset:
  113. return []
  114. all_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
  115. dataset.tenant_id, dataset_id, query, external_retrieval_model
  116. )
  117. return all_documents
  118. @classmethod
  119. def keyword_search(
  120. cls, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list, exceptions: list
  121. ):
  122. with flask_app.app_context():
  123. try:
  124. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  125. keyword = Keyword(dataset=dataset)
  126. documents = keyword.search(cls.escape_query_for_search(query), top_k=top_k)
  127. all_documents.extend(documents)
  128. except Exception as e:
  129. exceptions.append(str(e))
  130. @classmethod
  131. def embedding_search(
  132. cls,
  133. flask_app: Flask,
  134. dataset_id: str,
  135. query: str,
  136. top_k: int,
  137. score_threshold: Optional[float],
  138. reranking_model: Optional[dict],
  139. all_documents: list,
  140. retrieval_method: str,
  141. exceptions: list,
  142. ):
  143. with flask_app.app_context():
  144. try:
  145. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  146. vector = Vector(dataset=dataset)
  147. documents = vector.search_by_vector(
  148. cls.escape_query_for_search(query),
  149. search_type="similarity_score_threshold",
  150. top_k=top_k,
  151. score_threshold=score_threshold,
  152. filter={"group_id": [dataset.id]},
  153. )
  154. if documents:
  155. if (
  156. reranking_model
  157. and reranking_model.get("reranking_model_name")
  158. and reranking_model.get("reranking_provider_name")
  159. and retrieval_method == RetrievalMethod.SEMANTIC_SEARCH.value
  160. ):
  161. data_post_processor = DataPostProcessor(
  162. str(dataset.tenant_id), RerankMode.RERANKING_MODEL.value, reranking_model, None, False
  163. )
  164. all_documents.extend(
  165. data_post_processor.invoke(
  166. query=query,
  167. documents=documents,
  168. score_threshold=score_threshold,
  169. top_n=len(documents),
  170. )
  171. )
  172. else:
  173. all_documents.extend(documents)
  174. except Exception as e:
  175. exceptions.append(str(e))
  176. @classmethod
  177. def full_text_index_search(
  178. cls,
  179. flask_app: Flask,
  180. dataset_id: str,
  181. query: str,
  182. top_k: int,
  183. score_threshold: Optional[float],
  184. reranking_model: Optional[dict],
  185. all_documents: list,
  186. retrieval_method: str,
  187. exceptions: list,
  188. ):
  189. with flask_app.app_context():
  190. try:
  191. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  192. vector_processor = Vector(
  193. dataset=dataset,
  194. )
  195. documents = vector_processor.search_by_full_text(cls.escape_query_for_search(query), top_k=top_k)
  196. if documents:
  197. if (
  198. reranking_model
  199. and reranking_model.get("reranking_model_name")
  200. and reranking_model.get("reranking_provider_name")
  201. and retrieval_method == RetrievalMethod.FULL_TEXT_SEARCH.value
  202. ):
  203. data_post_processor = DataPostProcessor(
  204. str(dataset.tenant_id), RerankMode.RERANKING_MODEL.value, reranking_model, None, False
  205. )
  206. all_documents.extend(
  207. data_post_processor.invoke(
  208. query=query,
  209. documents=documents,
  210. score_threshold=score_threshold,
  211. top_n=len(documents),
  212. )
  213. )
  214. else:
  215. all_documents.extend(documents)
  216. except Exception as e:
  217. exceptions.append(str(e))
  218. @staticmethod
  219. def escape_query_for_search(query: str) -> str:
  220. return query.replace('"', '\\"')