segment.py 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221
  1. from flask import request
  2. from flask_login import current_user # type: ignore
  3. from flask_restful import marshal, reqparse # type: ignore
  4. from werkzeug.exceptions import NotFound
  5. from controllers.service_api import api
  6. from controllers.service_api.app.error import ProviderNotInitializeError
  7. from controllers.service_api.wraps import (
  8. DatasetApiResource,
  9. cloud_edition_billing_knowledge_limit_check,
  10. cloud_edition_billing_resource_check,
  11. )
  12. from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
  13. from core.model_manager import ModelManager
  14. from core.model_runtime.entities.model_entities import ModelType
  15. from extensions.ext_database import db
  16. from fields.segment_fields import segment_fields
  17. from models.dataset import Dataset, DocumentSegment
  18. from services.dataset_service import DatasetService, DocumentService, SegmentService
  19. from services.entities.knowledge_entities.knowledge_entities import SegmentUpdateArgs
  20. class SegmentApi(DatasetApiResource):
  21. """Resource for segments."""
  22. @cloud_edition_billing_resource_check("vector_space", "dataset")
  23. @cloud_edition_billing_knowledge_limit_check("add_segment", "dataset")
  24. def post(self, tenant_id, dataset_id, document_id):
  25. """Create single segment."""
  26. # check dataset
  27. dataset_id = str(dataset_id)
  28. tenant_id = str(tenant_id)
  29. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  30. if not dataset:
  31. raise NotFound("Dataset not found.")
  32. # check document
  33. document_id = str(document_id)
  34. document = DocumentService.get_document(dataset.id, document_id)
  35. if not document:
  36. raise NotFound("Document not found.")
  37. if document.indexing_status != "completed":
  38. raise NotFound("Document is not completed.")
  39. if not document.enabled:
  40. raise NotFound("Document is disabled.")
  41. # check embedding model setting
  42. if dataset.indexing_technique == "high_quality":
  43. try:
  44. model_manager = ModelManager()
  45. model_manager.get_model_instance(
  46. tenant_id=current_user.current_tenant_id,
  47. provider=dataset.embedding_model_provider,
  48. model_type=ModelType.TEXT_EMBEDDING,
  49. model=dataset.embedding_model,
  50. )
  51. except LLMBadRequestError:
  52. raise ProviderNotInitializeError(
  53. "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
  54. )
  55. except ProviderTokenNotInitError as ex:
  56. raise ProviderNotInitializeError(ex.description)
  57. # validate args
  58. parser = reqparse.RequestParser()
  59. parser.add_argument("segments", type=list, required=False, nullable=True, location="json")
  60. args = parser.parse_args()
  61. if args["segments"] is not None:
  62. for args_item in args["segments"]:
  63. SegmentService.segment_create_args_validate(args_item, document)
  64. segments = SegmentService.multi_create_segment(args["segments"], document, dataset)
  65. return {"data": marshal(segments, segment_fields), "doc_form": document.doc_form}, 200
  66. else:
  67. return {"error": "Segments is required"}, 400
  68. def get(self, tenant_id, dataset_id, document_id):
  69. """Create single segment."""
  70. # check dataset
  71. dataset_id = str(dataset_id)
  72. tenant_id = str(tenant_id)
  73. page = request.args.get("page", default=1, type=int)
  74. limit = request.args.get("limit", default=20, type=int)
  75. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  76. if not dataset:
  77. raise NotFound("Dataset not found.")
  78. # check document
  79. document_id = str(document_id)
  80. document = DocumentService.get_document(dataset.id, document_id)
  81. if not document:
  82. raise NotFound("Document not found.")
  83. # check embedding model setting
  84. if dataset.indexing_technique == "high_quality":
  85. try:
  86. model_manager = ModelManager()
  87. model_manager.get_model_instance(
  88. tenant_id=current_user.current_tenant_id,
  89. provider=dataset.embedding_model_provider,
  90. model_type=ModelType.TEXT_EMBEDDING,
  91. model=dataset.embedding_model,
  92. )
  93. except LLMBadRequestError:
  94. raise ProviderNotInitializeError(
  95. "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
  96. )
  97. except ProviderTokenNotInitError as ex:
  98. raise ProviderNotInitializeError(ex.description)
  99. parser = reqparse.RequestParser()
  100. parser.add_argument("status", type=str, action="append", default=[], location="args")
  101. parser.add_argument("keyword", type=str, default=None, location="args")
  102. args = parser.parse_args()
  103. status_list = args["status"]
  104. keyword = args["keyword"]
  105. query = DocumentSegment.query.filter(
  106. DocumentSegment.document_id == str(document_id), DocumentSegment.tenant_id == current_user.current_tenant_id
  107. )
  108. if status_list:
  109. query = query.filter(DocumentSegment.status.in_(status_list))
  110. if keyword:
  111. query = query.where(DocumentSegment.content.ilike(f"%{keyword}%"))
  112. total = query.count()
  113. query = query.order_by(DocumentSegment.position)
  114. paginated_segments = query.paginate(
  115. page=page,
  116. per_page=limit,
  117. max_per_page=100,
  118. error_out=False,
  119. )
  120. segments = paginated_segments.items
  121. response = {
  122. "data": marshal(segments, segment_fields),
  123. "doc_form": document.doc_form,
  124. "total": total,
  125. "has_more": len(segments) == limit,
  126. "limit": limit,
  127. "page": page,
  128. }
  129. return response, 200
  130. class DatasetSegmentApi(DatasetApiResource):
  131. def delete(self, tenant_id, dataset_id, document_id, segment_id):
  132. # check dataset
  133. dataset_id = str(dataset_id)
  134. tenant_id = str(tenant_id)
  135. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  136. if not dataset:
  137. raise NotFound("Dataset not found.")
  138. # check user's model setting
  139. DatasetService.check_dataset_model_setting(dataset)
  140. # check document
  141. document_id = str(document_id)
  142. document = DocumentService.get_document(dataset_id, document_id)
  143. if not document:
  144. raise NotFound("Document not found.")
  145. # check segment
  146. segment = DocumentSegment.query.filter(
  147. DocumentSegment.id == str(segment_id), DocumentSegment.tenant_id == current_user.current_tenant_id
  148. ).first()
  149. if not segment:
  150. raise NotFound("Segment not found.")
  151. SegmentService.delete_segment(segment, document, dataset)
  152. return {"result": "success"}, 200
  153. @cloud_edition_billing_resource_check("vector_space", "dataset")
  154. def post(self, tenant_id, dataset_id, document_id, segment_id):
  155. # check dataset
  156. dataset_id = str(dataset_id)
  157. tenant_id = str(tenant_id)
  158. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  159. if not dataset:
  160. raise NotFound("Dataset not found.")
  161. # check user's model setting
  162. DatasetService.check_dataset_model_setting(dataset)
  163. # check document
  164. document_id = str(document_id)
  165. document = DocumentService.get_document(dataset_id, document_id)
  166. if not document:
  167. raise NotFound("Document not found.")
  168. if dataset.indexing_technique == "high_quality":
  169. # check embedding model setting
  170. try:
  171. model_manager = ModelManager()
  172. model_manager.get_model_instance(
  173. tenant_id=current_user.current_tenant_id,
  174. provider=dataset.embedding_model_provider,
  175. model_type=ModelType.TEXT_EMBEDDING,
  176. model=dataset.embedding_model,
  177. )
  178. except LLMBadRequestError:
  179. raise ProviderNotInitializeError(
  180. "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
  181. )
  182. except ProviderTokenNotInitError as ex:
  183. raise ProviderNotInitializeError(ex.description)
  184. # check segment
  185. segment_id = str(segment_id)
  186. segment = DocumentSegment.query.filter(
  187. DocumentSegment.id == str(segment_id), DocumentSegment.tenant_id == current_user.current_tenant_id
  188. ).first()
  189. if not segment:
  190. raise NotFound("Segment not found.")
  191. # validate args
  192. parser = reqparse.RequestParser()
  193. parser.add_argument("segment", type=dict, required=False, nullable=True, location="json")
  194. args = parser.parse_args()
  195. SegmentService.segment_create_args_validate(args["segment"], document)
  196. segment = SegmentService.update_segment(SegmentUpdateArgs(**args["segment"]), segment, document, dataset)
  197. return {"data": marshal(segment, segment_fields), "doc_form": document.doc_form}, 200
  198. api.add_resource(SegmentApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments")
  199. api.add_resource(
  200. DatasetSegmentApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>"
  201. )