Ding Jiatong 3087913b74 Fix the situation where output_tokens/input_tokens may be None in response.usage (#10728) há 5 meses atrás
..
.idea 7ae728a9a3 fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) há 8 meses atrás
.vscode e61752bd3a feat/enhance the multi-modal support (#8818) há 6 meses atrás
configs 873e9720e9 feat: AnalyticDB vector store supports invocation via SQL. (#10802) há 5 meses atrás
constants db1d2aaff5 Feat/add Slovensko (Slovenija) (#10731) há 5 meses atrás
contexts e61752bd3a feat/enhance the multi-modal support (#8818) há 6 meses atrás
controllers 904ea05bf6 fix: download some remote files raise error (#10781) há 5 meses atrás
core 3087913b74 Fix the situation where output_tokens/input_tokens may be None in response.usage (#10728) há 5 meses atrás
docker 931e76e3d1 fix: remove unused queue `generation` (#10532) há 5 meses atrás
events e61752bd3a feat/enhance the multi-modal support (#8818) há 6 meses atrás
extensions 128efc3193 Feat/clean message records (#10588) há 5 meses atrás
factories 328965ed7c Fix: crash of workflow file upload (#10831) há 5 meses atrás
fields 6e23903c63 Conversation delete issue (#10423) há 5 meses atrás
libs 51db59622c chore(lint): cleanup repeated cause exception in logging.exception replaced by helpful message (#10425) há 5 meses atrás
migrations 128efc3193 Feat/clean message records (#10588) há 5 meses atrás
models 328965ed7c Fix: crash of workflow file upload (#10831) há 5 meses atrás
schedule 128efc3193 Feat/clean message records (#10588) há 5 meses atrás
services c49efc0c22 Feat/account not found (#10804) há 5 meses atrás
tasks 51db59622c chore(lint): cleanup repeated cause exception in logging.exception replaced by helpful message (#10425) há 5 meses atrás
templates 4fd2743efa Feat/new login (#8120) há 6 meses atrás
tests bc1013dacf feat: support json schema for gemini models (#10835) há 5 meses atrás
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) há 10 meses atrás
.env.example 873e9720e9 feat: AnalyticDB vector store supports invocation via SQL. (#10802) há 5 meses atrás
Dockerfile a3155e0613 Update expat version (#10686) há 5 meses atrás
README.md eafe5a9d8f chore(ci): bring back poetry cache to speed up CI jobs (#10347) há 5 meses atrás
app.py 3e04c92ff9 chore(api): remove setting of expired remember_token cookie in after_request (#10582) há 5 meses atrás
app_factory.py 0e8ab0588f fix: (#10437 followup) fix conditions with DEBUG config (#10438) há 5 meses atrás
commands.py 51db59622c chore(lint): cleanup repeated cause exception in logging.exception replaced by helpful message (#10425) há 5 meses atrás
poetry.lock 90d6ebc879 Add youtube-transcript-api as tool (#10772) há 5 meses atrás
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) há 10 meses atrás
pyproject.toml 90d6ebc879 Add youtube-transcript-api as tool (#10772) há 5 meses atrás
pytest.ini 0ebd985672 feat: add models for gitee.ai (#9490) há 5 meses atrás

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to handle and debug the async tasks (e.g. dataset importing and documents indexing), please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install -C api --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   poetry run -C api bash dev/pytest/pytest_all_tests.sh