Little 羊 7c2c949f01 Update ernie_bot.py (#6236) hace 9 meses
..
configs 63e34e5227 feat: support MyScale vector database (#6092) hace 9 meses
constants 6ef401a9f0 feat:add tts-streaming config and future (#5492) hace 9 meses
controllers 1df71ec64d refactor(api): switch to dify_config with Pydantic in controllers and schedule (#6237) hace 9 meses
core 7c2c949f01 Update ernie_bot.py (#6236) hace 9 meses
docker cb09dbef66 feat: correctly delete applications using Celery workers (#5787) hace 9 meses
events cb09dbef66 feat: correctly delete applications using Celery workers (#5787) hace 9 meses
extensions 678ad6b7eb Fix/file stream azure blob (#6196) hace 9 meses
fields 9622fbb62f feat: app rate limit (#5844) hace 9 meses
libs 9622fbb62f feat: app rate limit (#5844) hace 9 meses
migrations 9622fbb62f feat: app rate limit (#5844) hace 9 meses
models 9622fbb62f feat: app rate limit (#5844) hace 9 meses
schedule 1df71ec64d refactor(api): switch to dify_config with Pydantic in controllers and schedule (#6237) hace 9 meses
services 7b225a5ab0 refactor(services/tasks): Swtich to dify_config witch Pydantic (#6203) hace 9 meses
tasks 7b225a5ab0 refactor(services/tasks): Swtich to dify_config witch Pydantic (#6203) hace 9 meses
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) hace 9 meses
tests 63e34e5227 feat: support MyScale vector database (#6092) hace 9 meses
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) hace 10 meses
.env.example 63e34e5227 feat: support MyScale vector database (#6092) hace 9 meses
Dockerfile 9b7c74a5d9 chore: skip pip upgrade preparation in api dockerfile (#5999) hace 9 meses
README.md 2d6624cf9e typo: Update README.md (#5987) hace 9 meses
app.py d7f75d17cc Chore/remove-unused-code (#5917) hace 9 meses
commands.py 7c70eb87bc feat: support AnalyticDB vector store (#5586) hace 9 meses
poetry.lock 63e34e5227 feat: support MyScale vector database (#6092) hace 9 meses
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) hace 10 meses
pyproject.toml 63e34e5227 feat: support MyScale vector database (#6092) hace 9 meses

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   docker compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh