Hélio Lúcio 7b7576ad55 Add Azure AI Studio as provider (#7549) 8 hónapja
..
.idea 7ae728a9a3 fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) 8 hónapja
.vscode 0d4753785f chore: remove .idea and .vscode from root path (#7437) 8 hónapja
configs 0474f0c906 chore: Update version to 0.7.2 (#7646) 8 hónapja
constants 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 hónapja
contexts 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 hónapja
controllers 1473083a41 catch openai rate limit error (#7658) 8 hónapja
core 7b7576ad55 Add Azure AI Studio as provider (#7549) 8 hónapja
docker 8dfdb37de3 fix: use LOG_LEVEL for celery startup (#7628) 8 hónapja
events fbf31b5d52 feat: custom app icon (#7196) 8 hónapja
extensions 0006c6f0fd fix(storage): 🐛 Create S3 bucket if it doesn't exist (#7514) 8 hónapja
fields e35e251863 feat: Sort conversations by updated_at desc (#7348) 8 hónapja
libs fbf31b5d52 feat: custom app icon (#7196) 8 hónapja
migrations 2e9084f369 chore(database): Rename table name from `workflow__conversation_variables` to `workflow_conversation_variables`. (#7432) 8 hónapja
models 2c427e04be Feat/7134 use dataset api create a dataset with permission (#7508) 8 hónapja
schedule 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 hónapja
services 1473083a41 catch openai rate limit error (#7658) 8 hónapja
tasks 979422cdc6 chore(api/tasks): apply ruff reformatting (#7594) 8 hónapja
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) 9 hónapja
tests 7b7576ad55 Add Azure AI Studio as provider (#7549) 8 hónapja
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) 10 hónapja
.env.example 2c427e04be Feat/7134 use dataset api create a dataset with permission (#7508) 8 hónapja
Dockerfile 7ae728a9a3 fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) 8 hónapja
README.md fb5e3662d5 Chores: add missing profile for middleware docker compose cmd and fix ssrf-proxy doc link (#6372) 9 hónapja
app.py 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 hónapja
commands.py 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 hónapja
poetry.lock 7b7576ad55 Add Azure AI Studio as provider (#7549) 8 hónapja
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) 10 hónapja
pyproject.toml 7b7576ad55 Add Azure AI Studio as provider (#7549) 8 hónapja

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh