|
9 months ago | |
---|---|---|
.. | ||
configs | 9 months ago | |
constants | 9 months ago | |
controllers | 9 months ago | |
core | 9 months ago | |
docker | 9 months ago | |
events | 9 months ago | |
extensions | 9 months ago | |
fields | 9 months ago | |
libs | 9 months ago | |
migrations | 9 months ago | |
models | 9 months ago | |
schedule | 1 year ago | |
services | 9 months ago | |
tasks | 9 months ago | |
templates | 9 months ago | |
tests | 9 months ago | |
.dockerignore | 10 months ago | |
.env.example | 9 months ago | |
Dockerfile | 9 months ago | |
README.md | 9 months ago | |
app.py | 9 months ago | |
commands.py | 9 months ago | |
poetry.lock | 9 months ago | |
poetry.toml | 10 months ago | |
pyproject.toml | 9 months ago |
[!IMPORTANT] In the v0.6.12 release, we deprecated
pip
as the package management tool for Dify API Backend service and replaced it withpoetry
.
The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose
.
cd ../docker
cp middleware.env.example middleware.env
docker compose -f docker-compose.middleware.yaml -p dify up -d
cd ../api
.env.example
to .env
SECRET_KEY
in the .env
file. sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
secret_key=$(openssl rand -base64 42)
sed -i '' "/^SECRET_KEY=/c\\
SECRET_KEY=${secret_key}" .env
Dify API service uses Poetry to manage dependencies. You can execute poetry shell
to activate the environment.
poetry env use 3.10
poetry install
In case of contributors missing to update dependencies for pyproject.toml
, you can perform the following shell instead.
poetry shell # activate current environment
poetry add $(cat requirements.txt) # install dependencies of production and update pyproject.toml
poetry add $(cat requirements-dev.txt) --group dev # install dependencies of development and update pyproject.toml
Before the first launch, migrate the database to the latest version.
poetry run python -m flask db upgrade
poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
http://localhost:3000
... poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion
The started celery app handles the async tasks, e.g. dataset importing and documents indexing.
poetry install --with dev
tool.pytest_env
section in pyproject.toml
cd ../
poetry run -C api bash dev/pytest/pytest_all_tests.sh