Bowen Liang 7943f7f697 chore: fix legacy API usages of Query.get() by Session.get() in SqlAlchemy 2 (#6340) 9 mēneši atpakaļ
..
configs 7c397f5722 update celery beat scheduler time to env (#6352) 9 mēneši atpakaļ
constants 6ef401a9f0 feat:add tts-streaming config and future (#5492) 9 mēneši atpakaļ
controllers 7943f7f697 chore: fix legacy API usages of Query.get() by Session.get() in SqlAlchemy 2 (#6340) 9 mēneši atpakaļ
core 0de224b153 fix wrong using of RetrievalMethod Enum (#6345) 9 mēneši atpakaļ
docker cb09dbef66 feat: correctly delete applications using Celery workers (#5787) 9 mēneši atpakaļ
events d320d1468d Feat/delete file when clean document (#5882) 9 mēneši atpakaļ
extensions 7c397f5722 update celery beat scheduler time to env (#6352) 9 mēneši atpakaļ
fields 9622fbb62f feat: app rate limit (#5844) 9 mēneši atpakaļ
libs 9622fbb62f feat: app rate limit (#5844) 9 mēneši atpakaļ
migrations 9622fbb62f feat: app rate limit (#5844) 9 mēneši atpakaļ
models 7943f7f697 chore: fix legacy API usages of Query.get() by Session.get() in SqlAlchemy 2 (#6340) 9 mēneši atpakaļ
schedule 1df71ec64d refactor(api): switch to dify_config with Pydantic in controllers and schedule (#6237) 9 mēneši atpakaļ
services 0de224b153 fix wrong using of RetrievalMethod Enum (#6345) 9 mēneši atpakaļ
tasks d320d1468d Feat/delete file when clean document (#5882) 9 mēneši atpakaļ
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) 9 mēneši atpakaļ
tests 63e34e5227 feat: support MyScale vector database (#6092) 9 mēneši atpakaļ
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) 10 mēneši atpakaļ
.env.example 7c397f5722 update celery beat scheduler time to env (#6352) 9 mēneši atpakaļ
Dockerfile 9b7c74a5d9 chore: skip pip upgrade preparation in api dockerfile (#5999) 9 mēneši atpakaļ
README.md 2d6624cf9e typo: Update README.md (#5987) 9 mēneši atpakaļ
app.py d7f75d17cc Chore/remove-unused-code (#5917) 9 mēneši atpakaļ
commands.py 7c70eb87bc feat: support AnalyticDB vector store (#5586) 9 mēneši atpakaļ
poetry.lock 7943f7f697 chore: fix legacy API usages of Query.get() by Session.get() in SqlAlchemy 2 (#6340) 9 mēneši atpakaļ
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) 10 mēneši atpakaļ
pyproject.toml 7943f7f697 chore: fix legacy API usages of Query.get() by Session.get() in SqlAlchemy 2 (#6340) 9 mēneši atpakaļ

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   docker compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh