-LAN- 78a380bcc4 fix(migrations): correct schema reference in service API history migration (#10452) 5 mesiacov pred
..
.idea 7ae728a9a3 fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) 8 mesiacov pred
.vscode e61752bd3a feat/enhance the multi-modal support (#8818) 6 mesiacov pred
configs 033ab5490b feat: support LLM understand video (#9828) 5 mesiacov pred
constants 3e9d271b52 nltk security issue and upgrade unstructured (#9558) 6 mesiacov pred
contexts e61752bd3a feat/enhance the multi-modal support (#8818) 6 mesiacov pred
controllers d52c750942 embedding model check when init the knowledge (#10463) 5 mesiacov pred
core 7903ba0297 chore: make comfy workflow can generate image with a random seed (#10462) 5 mesiacov pred
docker 8dfdb37de3 fix: use LOG_LEVEL for celery startup (#7628) 8 mesiacov pred
events e61752bd3a feat/enhance the multi-modal support (#8818) 6 mesiacov pred
extensions 7c2a9b0744 celery worker log format following LOG_FORMAT env#9404 (#10016) 5 mesiacov pred
factories 7962101e5e fix: iteration none output error (#10295) 5 mesiacov pred
fields 6e23903c63 Conversation delete issue (#10423) 5 mesiacov pred
libs 574c4a264f chore(lint): Use logging.exception instead of logging.error (#10415) 5 mesiacov pred
migrations 78a380bcc4 fix(migrations): correct schema reference in service API history migration (#10452) 5 mesiacov pred
models 249b897872 feat(model): add validation for custom disclaimer length (#10287) 5 mesiacov pred
schedule 07ad362854 fix: Cannot find declaration to go to CLEAN_DAY_SETTING (#10157) 5 mesiacov pred
services 4f1a56f0f0 update document and segment word count (#10449) 5 mesiacov pred
tasks 4f1a56f0f0 update document and segment word count (#10449) 5 mesiacov pred
templates 4fd2743efa Feat/new login (#8120) 6 mesiacov pred
tests 438ad8148b fix(http_request): send form data (#10431) 5 mesiacov pred
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) 10 mesiacov pred
.env.example 033ab5490b feat: support LLM understand video (#9828) 5 mesiacov pred
Dockerfile 754bfb181c chore(ci): avoid reinstall pipx and pin poetry version aligned with in api dockerfile (#10426) 5 mesiacov pred
README.md eafe5a9d8f chore(ci): bring back poetry cache to speed up CI jobs (#10347) 5 mesiacov pred
app.py 0e8ab0588f fix: (#10437 followup) fix conditions with DEBUG config (#10438) 5 mesiacov pred
app_factory.py 0e8ab0588f fix: (#10437 followup) fix conditions with DEBUG config (#10438) 5 mesiacov pred
commands.py 878d13ef42 Added OceanBase as an option for the vector store in Dify (#10010) 5 mesiacov pred
poetry.lock 7c2a9b0744 celery worker log format following LOG_FORMAT env#9404 (#10016) 5 mesiacov pred
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) 10 mesiacov pred
pyproject.toml 7c2a9b0744 celery worker log format following LOG_FORMAT env#9404 (#10016) 5 mesiacov pred
pytest.ini 0ebd985672 feat: add models for gitee.ai (#9490) 5 mesiacov pred

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to handle and debug the async tasks (e.g. dataset importing and documents indexing), please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install -C api --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   poetry run -C api bash dev/pytest/pytest_all_tests.sh