dataset_service.py 67 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469
  1. import datetime
  2. import json
  3. import logging
  4. import random
  5. import time
  6. import uuid
  7. from typing import Optional
  8. from flask import current_app
  9. from flask_login import current_user
  10. from sqlalchemy import func
  11. from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
  12. from core.model_manager import ModelManager
  13. from core.model_runtime.entities.model_entities import ModelType
  14. from core.rag.datasource.keyword.keyword_factory import Keyword
  15. from core.rag.models.document import Document as RAGDocument
  16. from core.rag.retrieval.retrival_methods import RetrievalMethod
  17. from events.dataset_event import dataset_was_deleted
  18. from events.document_event import document_was_deleted
  19. from extensions.ext_database import db
  20. from extensions.ext_redis import redis_client
  21. from libs import helper
  22. from models.account import Account
  23. from models.dataset import (
  24. AppDatasetJoin,
  25. Dataset,
  26. DatasetCollectionBinding,
  27. DatasetProcessRule,
  28. DatasetQuery,
  29. Document,
  30. DocumentSegment,
  31. )
  32. from models.model import UploadFile
  33. from models.source import DataSourceOauthBinding
  34. from services.errors.account import NoPermissionError
  35. from services.errors.dataset import DatasetNameDuplicateError
  36. from services.errors.document import DocumentIndexingError
  37. from services.errors.file import FileNotExistsError
  38. from services.feature_service import FeatureModel, FeatureService
  39. from services.tag_service import TagService
  40. from services.vector_service import VectorService
  41. from tasks.clean_notion_document_task import clean_notion_document_task
  42. from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
  43. from tasks.delete_segment_from_index_task import delete_segment_from_index_task
  44. from tasks.disable_segment_from_index_task import disable_segment_from_index_task
  45. from tasks.document_indexing_task import document_indexing_task
  46. from tasks.document_indexing_update_task import document_indexing_update_task
  47. from tasks.duplicate_document_indexing_task import duplicate_document_indexing_task
  48. from tasks.recover_document_indexing_task import recover_document_indexing_task
  49. from tasks.retry_document_indexing_task import retry_document_indexing_task
  50. from tasks.sync_website_document_indexing_task import sync_website_document_indexing_task
  51. class DatasetService:
  52. @staticmethod
  53. def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None, search=None, tag_ids=None):
  54. if user:
  55. permission_filter = db.or_(Dataset.created_by == user.id,
  56. Dataset.permission == 'all_team_members')
  57. else:
  58. permission_filter = Dataset.permission == 'all_team_members'
  59. query = Dataset.query.filter(
  60. db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \
  61. .order_by(Dataset.created_at.desc())
  62. if search:
  63. query = query.filter(db.and_(Dataset.name.ilike(f'%{search}%')))
  64. if tag_ids:
  65. target_ids = TagService.get_target_ids_by_tag_ids('knowledge', tenant_id, tag_ids)
  66. if target_ids:
  67. query = query.filter(db.and_(Dataset.id.in_(target_ids)))
  68. else:
  69. return [], 0
  70. datasets = query.paginate(
  71. page=page,
  72. per_page=per_page,
  73. max_per_page=100,
  74. error_out=False
  75. )
  76. return datasets.items, datasets.total
  77. @staticmethod
  78. def get_process_rules(dataset_id):
  79. # get the latest process rule
  80. dataset_process_rule = db.session.query(DatasetProcessRule). \
  81. filter(DatasetProcessRule.dataset_id == dataset_id). \
  82. order_by(DatasetProcessRule.created_at.desc()). \
  83. limit(1). \
  84. one_or_none()
  85. if dataset_process_rule:
  86. mode = dataset_process_rule.mode
  87. rules = dataset_process_rule.rules_dict
  88. else:
  89. mode = DocumentService.DEFAULT_RULES['mode']
  90. rules = DocumentService.DEFAULT_RULES['rules']
  91. return {
  92. 'mode': mode,
  93. 'rules': rules
  94. }
  95. @staticmethod
  96. def get_datasets_by_ids(ids, tenant_id):
  97. datasets = Dataset.query.filter(Dataset.id.in_(ids),
  98. Dataset.tenant_id == tenant_id).paginate(
  99. page=1, per_page=len(ids), max_per_page=len(ids), error_out=False)
  100. return datasets.items, datasets.total
  101. @staticmethod
  102. def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
  103. # check if dataset name already exists
  104. if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
  105. raise DatasetNameDuplicateError(
  106. f'Dataset with name {name} already exists.')
  107. embedding_model = None
  108. if indexing_technique == 'high_quality':
  109. model_manager = ModelManager()
  110. embedding_model = model_manager.get_default_model_instance(
  111. tenant_id=tenant_id,
  112. model_type=ModelType.TEXT_EMBEDDING
  113. )
  114. dataset = Dataset(name=name, indexing_technique=indexing_technique)
  115. # dataset = Dataset(name=name, provider=provider, config=config)
  116. dataset.created_by = account.id
  117. dataset.updated_by = account.id
  118. dataset.tenant_id = tenant_id
  119. dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
  120. dataset.embedding_model = embedding_model.model if embedding_model else None
  121. db.session.add(dataset)
  122. db.session.commit()
  123. return dataset
  124. @staticmethod
  125. def get_dataset(dataset_id):
  126. return Dataset.query.filter_by(
  127. id=dataset_id
  128. ).first()
  129. @staticmethod
  130. def check_dataset_model_setting(dataset):
  131. if dataset.indexing_technique == 'high_quality':
  132. try:
  133. model_manager = ModelManager()
  134. model_manager.get_model_instance(
  135. tenant_id=dataset.tenant_id,
  136. provider=dataset.embedding_model_provider,
  137. model_type=ModelType.TEXT_EMBEDDING,
  138. model=dataset.embedding_model
  139. )
  140. except LLMBadRequestError:
  141. raise ValueError(
  142. "No Embedding Model available. Please configure a valid provider "
  143. "in the Settings -> Model Provider.")
  144. except ProviderTokenNotInitError as ex:
  145. raise ValueError(f"The dataset in unavailable, due to: "
  146. f"{ex.description}")
  147. @staticmethod
  148. def update_dataset(dataset_id, data, user):
  149. filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
  150. dataset = DatasetService.get_dataset(dataset_id)
  151. DatasetService.check_dataset_permission(dataset, user)
  152. action = None
  153. if dataset.indexing_technique != data['indexing_technique']:
  154. # if update indexing_technique
  155. if data['indexing_technique'] == 'economy':
  156. action = 'remove'
  157. filtered_data['embedding_model'] = None
  158. filtered_data['embedding_model_provider'] = None
  159. filtered_data['collection_binding_id'] = None
  160. elif data['indexing_technique'] == 'high_quality':
  161. action = 'add'
  162. # get embedding model setting
  163. try:
  164. model_manager = ModelManager()
  165. embedding_model = model_manager.get_model_instance(
  166. tenant_id=current_user.current_tenant_id,
  167. provider=data['embedding_model_provider'],
  168. model_type=ModelType.TEXT_EMBEDDING,
  169. model=data['embedding_model']
  170. )
  171. filtered_data['embedding_model'] = embedding_model.model
  172. filtered_data['embedding_model_provider'] = embedding_model.provider
  173. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  174. embedding_model.provider,
  175. embedding_model.model
  176. )
  177. filtered_data['collection_binding_id'] = dataset_collection_binding.id
  178. except LLMBadRequestError:
  179. raise ValueError(
  180. "No Embedding Model available. Please configure a valid provider "
  181. "in the Settings -> Model Provider.")
  182. except ProviderTokenNotInitError as ex:
  183. raise ValueError(ex.description)
  184. else:
  185. if data['embedding_model_provider'] != dataset.embedding_model_provider or \
  186. data['embedding_model'] != dataset.embedding_model:
  187. action = 'update'
  188. try:
  189. model_manager = ModelManager()
  190. embedding_model = model_manager.get_model_instance(
  191. tenant_id=current_user.current_tenant_id,
  192. provider=data['embedding_model_provider'],
  193. model_type=ModelType.TEXT_EMBEDDING,
  194. model=data['embedding_model']
  195. )
  196. filtered_data['embedding_model'] = embedding_model.model
  197. filtered_data['embedding_model_provider'] = embedding_model.provider
  198. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  199. embedding_model.provider,
  200. embedding_model.model
  201. )
  202. filtered_data['collection_binding_id'] = dataset_collection_binding.id
  203. except LLMBadRequestError:
  204. raise ValueError(
  205. "No Embedding Model available. Please configure a valid provider "
  206. "in the Settings -> Model Provider.")
  207. except ProviderTokenNotInitError as ex:
  208. raise ValueError(ex.description)
  209. filtered_data['updated_by'] = user.id
  210. filtered_data['updated_at'] = datetime.datetime.now()
  211. # update Retrieval model
  212. filtered_data['retrieval_model'] = data['retrieval_model']
  213. dataset.query.filter_by(id=dataset_id).update(filtered_data)
  214. db.session.commit()
  215. if action:
  216. deal_dataset_vector_index_task.delay(dataset_id, action)
  217. return dataset
  218. @staticmethod
  219. def delete_dataset(dataset_id, user):
  220. dataset = DatasetService.get_dataset(dataset_id)
  221. if dataset is None:
  222. return False
  223. DatasetService.check_dataset_permission(dataset, user)
  224. dataset_was_deleted.send(dataset)
  225. db.session.delete(dataset)
  226. db.session.commit()
  227. return True
  228. @staticmethod
  229. def dataset_use_check(dataset_id) -> bool:
  230. count = AppDatasetJoin.query.filter_by(dataset_id=dataset_id).count()
  231. if count > 0:
  232. return True
  233. return False
  234. @staticmethod
  235. def check_dataset_permission(dataset, user):
  236. if dataset.tenant_id != user.current_tenant_id:
  237. logging.debug(
  238. f'User {user.id} does not have permission to access dataset {dataset.id}')
  239. raise NoPermissionError(
  240. 'You do not have permission to access this dataset.')
  241. if dataset.permission == 'only_me' and dataset.created_by != user.id:
  242. logging.debug(
  243. f'User {user.id} does not have permission to access dataset {dataset.id}')
  244. raise NoPermissionError(
  245. 'You do not have permission to access this dataset.')
  246. @staticmethod
  247. def get_dataset_queries(dataset_id: str, page: int, per_page: int):
  248. dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \
  249. .order_by(db.desc(DatasetQuery.created_at)) \
  250. .paginate(
  251. page=page, per_page=per_page, max_per_page=100, error_out=False
  252. )
  253. return dataset_queries.items, dataset_queries.total
  254. @staticmethod
  255. def get_related_apps(dataset_id: str):
  256. return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \
  257. .order_by(db.desc(AppDatasetJoin.created_at)).all()
  258. class DocumentService:
  259. DEFAULT_RULES = {
  260. 'mode': 'custom',
  261. 'rules': {
  262. 'pre_processing_rules': [
  263. {'id': 'remove_extra_spaces', 'enabled': True},
  264. {'id': 'remove_urls_emails', 'enabled': False}
  265. ],
  266. 'segmentation': {
  267. 'delimiter': '\n',
  268. 'max_tokens': 500,
  269. 'chunk_overlap': 50
  270. }
  271. }
  272. }
  273. DOCUMENT_METADATA_SCHEMA = {
  274. "book": {
  275. "title": str,
  276. "language": str,
  277. "author": str,
  278. "publisher": str,
  279. "publication_date": str,
  280. "isbn": str,
  281. "category": str,
  282. },
  283. "web_page": {
  284. "title": str,
  285. "url": str,
  286. "language": str,
  287. "publish_date": str,
  288. "author/publisher": str,
  289. "topic/keywords": str,
  290. "description": str,
  291. },
  292. "paper": {
  293. "title": str,
  294. "language": str,
  295. "author": str,
  296. "publish_date": str,
  297. "journal/conference_name": str,
  298. "volume/issue/page_numbers": str,
  299. "doi": str,
  300. "topic/keywords": str,
  301. "abstract": str,
  302. },
  303. "social_media_post": {
  304. "platform": str,
  305. "author/username": str,
  306. "publish_date": str,
  307. "post_url": str,
  308. "topic/tags": str,
  309. },
  310. "wikipedia_entry": {
  311. "title": str,
  312. "language": str,
  313. "web_page_url": str,
  314. "last_edit_date": str,
  315. "editor/contributor": str,
  316. "summary/introduction": str,
  317. },
  318. "personal_document": {
  319. "title": str,
  320. "author": str,
  321. "creation_date": str,
  322. "last_modified_date": str,
  323. "document_type": str,
  324. "tags/category": str,
  325. },
  326. "business_document": {
  327. "title": str,
  328. "author": str,
  329. "creation_date": str,
  330. "last_modified_date": str,
  331. "document_type": str,
  332. "department/team": str,
  333. },
  334. "im_chat_log": {
  335. "chat_platform": str,
  336. "chat_participants/group_name": str,
  337. "start_date": str,
  338. "end_date": str,
  339. "summary": str,
  340. },
  341. "synced_from_notion": {
  342. "title": str,
  343. "language": str,
  344. "author/creator": str,
  345. "creation_date": str,
  346. "last_modified_date": str,
  347. "notion_page_link": str,
  348. "category/tags": str,
  349. "description": str,
  350. },
  351. "synced_from_github": {
  352. "repository_name": str,
  353. "repository_description": str,
  354. "repository_owner/organization": str,
  355. "code_filename": str,
  356. "code_file_path": str,
  357. "programming_language": str,
  358. "github_link": str,
  359. "open_source_license": str,
  360. "commit_date": str,
  361. "commit_author": str,
  362. },
  363. "others": dict
  364. }
  365. @staticmethod
  366. def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
  367. document = db.session.query(Document).filter(
  368. Document.id == document_id,
  369. Document.dataset_id == dataset_id
  370. ).first()
  371. return document
  372. @staticmethod
  373. def get_document_by_id(document_id: str) -> Optional[Document]:
  374. document = db.session.query(Document).filter(
  375. Document.id == document_id
  376. ).first()
  377. return document
  378. @staticmethod
  379. def get_document_by_dataset_id(dataset_id: str) -> list[Document]:
  380. documents = db.session.query(Document).filter(
  381. Document.dataset_id == dataset_id,
  382. Document.enabled == True
  383. ).all()
  384. return documents
  385. @staticmethod
  386. def get_error_documents_by_dataset_id(dataset_id: str) -> list[Document]:
  387. documents = db.session.query(Document).filter(
  388. Document.dataset_id == dataset_id,
  389. Document.indexing_status.in_(['error', 'paused'])
  390. ).all()
  391. return documents
  392. @staticmethod
  393. def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:
  394. documents = db.session.query(Document).filter(
  395. Document.batch == batch,
  396. Document.dataset_id == dataset_id,
  397. Document.tenant_id == current_user.current_tenant_id
  398. ).all()
  399. return documents
  400. @staticmethod
  401. def get_document_file_detail(file_id: str):
  402. file_detail = db.session.query(UploadFile). \
  403. filter(UploadFile.id == file_id). \
  404. one_or_none()
  405. return file_detail
  406. @staticmethod
  407. def check_archived(document):
  408. if document.archived:
  409. return True
  410. else:
  411. return False
  412. @staticmethod
  413. def delete_document(document):
  414. # trigger document_was_deleted signal
  415. document_was_deleted.send(document.id, dataset_id=document.dataset_id, doc_form=document.doc_form)
  416. db.session.delete(document)
  417. db.session.commit()
  418. @staticmethod
  419. def rename_document(dataset_id: str, document_id: str, name: str) -> Document:
  420. dataset = DatasetService.get_dataset(dataset_id)
  421. if not dataset:
  422. raise ValueError('Dataset not found.')
  423. document = DocumentService.get_document(dataset_id, document_id)
  424. if not document:
  425. raise ValueError('Document not found.')
  426. if document.tenant_id != current_user.current_tenant_id:
  427. raise ValueError('No permission.')
  428. document.name = name
  429. db.session.add(document)
  430. db.session.commit()
  431. return document
  432. @staticmethod
  433. def pause_document(document):
  434. if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
  435. raise DocumentIndexingError()
  436. # update document to be paused
  437. document.is_paused = True
  438. document.paused_by = current_user.id
  439. document.paused_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  440. db.session.add(document)
  441. db.session.commit()
  442. # set document paused flag
  443. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  444. redis_client.setnx(indexing_cache_key, "True")
  445. @staticmethod
  446. def recover_document(document):
  447. if not document.is_paused:
  448. raise DocumentIndexingError()
  449. # update document to be recover
  450. document.is_paused = False
  451. document.paused_by = None
  452. document.paused_at = None
  453. db.session.add(document)
  454. db.session.commit()
  455. # delete paused flag
  456. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  457. redis_client.delete(indexing_cache_key)
  458. # trigger async task
  459. recover_document_indexing_task.delay(document.dataset_id, document.id)
  460. @staticmethod
  461. def retry_document(dataset_id: str, documents: list[Document]):
  462. for document in documents:
  463. # add retry flag
  464. retry_indexing_cache_key = 'document_{}_is_retried'.format(document.id)
  465. cache_result = redis_client.get(retry_indexing_cache_key)
  466. if cache_result is not None:
  467. raise ValueError("Document is being retried, please try again later")
  468. # retry document indexing
  469. document.indexing_status = 'waiting'
  470. db.session.add(document)
  471. db.session.commit()
  472. redis_client.setex(retry_indexing_cache_key, 600, 1)
  473. # trigger async task
  474. document_ids = [document.id for document in documents]
  475. retry_document_indexing_task.delay(dataset_id, document_ids)
  476. @staticmethod
  477. def sync_website_document(dataset_id: str, document: Document):
  478. # add sync flag
  479. sync_indexing_cache_key = 'document_{}_is_sync'.format(document.id)
  480. cache_result = redis_client.get(sync_indexing_cache_key)
  481. if cache_result is not None:
  482. raise ValueError("Document is being synced, please try again later")
  483. # sync document indexing
  484. document.indexing_status = 'waiting'
  485. data_source_info = document.data_source_info_dict
  486. data_source_info['mode'] = 'scrape'
  487. document.data_source_info = json.dumps(data_source_info, ensure_ascii=False)
  488. db.session.add(document)
  489. db.session.commit()
  490. redis_client.setex(sync_indexing_cache_key, 600, 1)
  491. sync_website_document_indexing_task.delay(dataset_id, document.id)
  492. @staticmethod
  493. def get_documents_position(dataset_id):
  494. document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
  495. if document:
  496. return document.position + 1
  497. else:
  498. return 1
  499. @staticmethod
  500. def save_document_with_dataset_id(dataset: Dataset, document_data: dict,
  501. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  502. created_from: str = 'web'):
  503. # check document limit
  504. features = FeatureService.get_features(current_user.current_tenant_id)
  505. if features.billing.enabled:
  506. if 'original_document_id' not in document_data or not document_data['original_document_id']:
  507. count = 0
  508. if document_data["data_source"]["type"] == "upload_file":
  509. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  510. count = len(upload_file_list)
  511. elif document_data["data_source"]["type"] == "notion_import":
  512. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  513. for notion_info in notion_info_list:
  514. count = count + len(notion_info['pages'])
  515. elif document_data["data_source"]["type"] == "website_crawl":
  516. website_info = document_data["data_source"]['info_list']['website_info_list']
  517. count = len(website_info['urls'])
  518. batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])
  519. if count > batch_upload_limit:
  520. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  521. DocumentService.check_documents_upload_quota(count, features)
  522. # if dataset is empty, update dataset data_source_type
  523. if not dataset.data_source_type:
  524. dataset.data_source_type = document_data["data_source"]["type"]
  525. if not dataset.indexing_technique:
  526. if 'indexing_technique' not in document_data \
  527. or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:
  528. raise ValueError("Indexing technique is required")
  529. dataset.indexing_technique = document_data["indexing_technique"]
  530. if document_data["indexing_technique"] == 'high_quality':
  531. model_manager = ModelManager()
  532. embedding_model = model_manager.get_default_model_instance(
  533. tenant_id=current_user.current_tenant_id,
  534. model_type=ModelType.TEXT_EMBEDDING
  535. )
  536. dataset.embedding_model = embedding_model.model
  537. dataset.embedding_model_provider = embedding_model.provider
  538. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  539. embedding_model.provider,
  540. embedding_model.model
  541. )
  542. dataset.collection_binding_id = dataset_collection_binding.id
  543. if not dataset.retrieval_model:
  544. default_retrieval_model = {
  545. 'search_method': RetrievalMethod.SEMANTIC_SEARCH,
  546. 'reranking_enable': False,
  547. 'reranking_model': {
  548. 'reranking_provider_name': '',
  549. 'reranking_model_name': ''
  550. },
  551. 'top_k': 2,
  552. 'score_threshold_enabled': False
  553. }
  554. dataset.retrieval_model = document_data.get('retrieval_model') if document_data.get(
  555. 'retrieval_model') else default_retrieval_model
  556. documents = []
  557. batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))
  558. if document_data.get("original_document_id"):
  559. document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
  560. documents.append(document)
  561. else:
  562. # save process rule
  563. if not dataset_process_rule:
  564. process_rule = document_data["process_rule"]
  565. if process_rule["mode"] == "custom":
  566. dataset_process_rule = DatasetProcessRule(
  567. dataset_id=dataset.id,
  568. mode=process_rule["mode"],
  569. rules=json.dumps(process_rule["rules"]),
  570. created_by=account.id
  571. )
  572. elif process_rule["mode"] == "automatic":
  573. dataset_process_rule = DatasetProcessRule(
  574. dataset_id=dataset.id,
  575. mode=process_rule["mode"],
  576. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  577. created_by=account.id
  578. )
  579. db.session.add(dataset_process_rule)
  580. db.session.commit()
  581. position = DocumentService.get_documents_position(dataset.id)
  582. document_ids = []
  583. duplicate_document_ids = []
  584. if document_data["data_source"]["type"] == "upload_file":
  585. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  586. for file_id in upload_file_list:
  587. file = db.session.query(UploadFile).filter(
  588. UploadFile.tenant_id == dataset.tenant_id,
  589. UploadFile.id == file_id
  590. ).first()
  591. # raise error if file not found
  592. if not file:
  593. raise FileNotExistsError()
  594. file_name = file.name
  595. data_source_info = {
  596. "upload_file_id": file_id,
  597. }
  598. # check duplicate
  599. if document_data.get('duplicate', False):
  600. document = Document.query.filter_by(
  601. dataset_id=dataset.id,
  602. tenant_id=current_user.current_tenant_id,
  603. data_source_type='upload_file',
  604. enabled=True,
  605. name=file_name
  606. ).first()
  607. if document:
  608. document.dataset_process_rule_id = dataset_process_rule.id
  609. document.updated_at = datetime.datetime.utcnow()
  610. document.created_from = created_from
  611. document.doc_form = document_data['doc_form']
  612. document.doc_language = document_data['doc_language']
  613. document.data_source_info = json.dumps(data_source_info)
  614. document.batch = batch
  615. document.indexing_status = 'waiting'
  616. db.session.add(document)
  617. documents.append(document)
  618. duplicate_document_ids.append(document.id)
  619. continue
  620. document = DocumentService.build_document(dataset, dataset_process_rule.id,
  621. document_data["data_source"]["type"],
  622. document_data["doc_form"],
  623. document_data["doc_language"],
  624. data_source_info, created_from, position,
  625. account, file_name, batch)
  626. db.session.add(document)
  627. db.session.flush()
  628. document_ids.append(document.id)
  629. documents.append(document)
  630. position += 1
  631. elif document_data["data_source"]["type"] == "notion_import":
  632. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  633. exist_page_ids = []
  634. exist_document = {}
  635. documents = Document.query.filter_by(
  636. dataset_id=dataset.id,
  637. tenant_id=current_user.current_tenant_id,
  638. data_source_type='notion_import',
  639. enabled=True
  640. ).all()
  641. if documents:
  642. for document in documents:
  643. data_source_info = json.loads(document.data_source_info)
  644. exist_page_ids.append(data_source_info['notion_page_id'])
  645. exist_document[data_source_info['notion_page_id']] = document.id
  646. for notion_info in notion_info_list:
  647. workspace_id = notion_info['workspace_id']
  648. data_source_binding = DataSourceOauthBinding.query.filter(
  649. db.and_(
  650. DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
  651. DataSourceOauthBinding.provider == 'notion',
  652. DataSourceOauthBinding.disabled == False,
  653. DataSourceOauthBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  654. )
  655. ).first()
  656. if not data_source_binding:
  657. raise ValueError('Data source binding not found.')
  658. for page in notion_info['pages']:
  659. if page['page_id'] not in exist_page_ids:
  660. data_source_info = {
  661. "notion_workspace_id": workspace_id,
  662. "notion_page_id": page['page_id'],
  663. "notion_page_icon": page['page_icon'],
  664. "type": page['type']
  665. }
  666. document = DocumentService.build_document(dataset, dataset_process_rule.id,
  667. document_data["data_source"]["type"],
  668. document_data["doc_form"],
  669. document_data["doc_language"],
  670. data_source_info, created_from, position,
  671. account, page['page_name'], batch)
  672. db.session.add(document)
  673. db.session.flush()
  674. document_ids.append(document.id)
  675. documents.append(document)
  676. position += 1
  677. else:
  678. exist_document.pop(page['page_id'])
  679. # delete not selected documents
  680. if len(exist_document) > 0:
  681. clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
  682. elif document_data["data_source"]["type"] == "website_crawl":
  683. website_info = document_data["data_source"]['info_list']['website_info_list']
  684. urls = website_info['urls']
  685. for url in urls:
  686. data_source_info = {
  687. 'url': url,
  688. 'provider': website_info['provider'],
  689. 'job_id': website_info['job_id'],
  690. 'only_main_content': website_info.get('only_main_content', False),
  691. 'mode': 'crawl',
  692. }
  693. document = DocumentService.build_document(dataset, dataset_process_rule.id,
  694. document_data["data_source"]["type"],
  695. document_data["doc_form"],
  696. document_data["doc_language"],
  697. data_source_info, created_from, position,
  698. account, url, batch)
  699. db.session.add(document)
  700. db.session.flush()
  701. document_ids.append(document.id)
  702. documents.append(document)
  703. position += 1
  704. db.session.commit()
  705. # trigger async task
  706. if document_ids:
  707. document_indexing_task.delay(dataset.id, document_ids)
  708. if duplicate_document_ids:
  709. duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids)
  710. return documents, batch
  711. @staticmethod
  712. def check_documents_upload_quota(count: int, features: FeatureModel):
  713. can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size
  714. if count > can_upload_size:
  715. raise ValueError(
  716. f'You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded.')
  717. @staticmethod
  718. def build_document(dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,
  719. document_language: str, data_source_info: dict, created_from: str, position: int,
  720. account: Account,
  721. name: str, batch: str):
  722. document = Document(
  723. tenant_id=dataset.tenant_id,
  724. dataset_id=dataset.id,
  725. position=position,
  726. data_source_type=data_source_type,
  727. data_source_info=json.dumps(data_source_info),
  728. dataset_process_rule_id=process_rule_id,
  729. batch=batch,
  730. name=name,
  731. created_from=created_from,
  732. created_by=account.id,
  733. doc_form=document_form,
  734. doc_language=document_language
  735. )
  736. return document
  737. @staticmethod
  738. def get_tenant_documents_count():
  739. documents_count = Document.query.filter(Document.completed_at.isnot(None),
  740. Document.enabled == True,
  741. Document.archived == False,
  742. Document.tenant_id == current_user.current_tenant_id).count()
  743. return documents_count
  744. @staticmethod
  745. def update_document_with_dataset_id(dataset: Dataset, document_data: dict,
  746. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  747. created_from: str = 'web'):
  748. DatasetService.check_dataset_model_setting(dataset)
  749. document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
  750. if document.display_status != 'available':
  751. raise ValueError("Document is not available")
  752. # update document name
  753. if document_data.get('name'):
  754. document.name = document_data['name']
  755. # save process rule
  756. if document_data.get('process_rule'):
  757. process_rule = document_data["process_rule"]
  758. if process_rule["mode"] == "custom":
  759. dataset_process_rule = DatasetProcessRule(
  760. dataset_id=dataset.id,
  761. mode=process_rule["mode"],
  762. rules=json.dumps(process_rule["rules"]),
  763. created_by=account.id
  764. )
  765. elif process_rule["mode"] == "automatic":
  766. dataset_process_rule = DatasetProcessRule(
  767. dataset_id=dataset.id,
  768. mode=process_rule["mode"],
  769. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  770. created_by=account.id
  771. )
  772. db.session.add(dataset_process_rule)
  773. db.session.commit()
  774. document.dataset_process_rule_id = dataset_process_rule.id
  775. # update document data source
  776. if document_data.get('data_source'):
  777. file_name = ''
  778. data_source_info = {}
  779. if document_data["data_source"]["type"] == "upload_file":
  780. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  781. for file_id in upload_file_list:
  782. file = db.session.query(UploadFile).filter(
  783. UploadFile.tenant_id == dataset.tenant_id,
  784. UploadFile.id == file_id
  785. ).first()
  786. # raise error if file not found
  787. if not file:
  788. raise FileNotExistsError()
  789. file_name = file.name
  790. data_source_info = {
  791. "upload_file_id": file_id,
  792. }
  793. elif document_data["data_source"]["type"] == "notion_import":
  794. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  795. for notion_info in notion_info_list:
  796. workspace_id = notion_info['workspace_id']
  797. data_source_binding = DataSourceOauthBinding.query.filter(
  798. db.and_(
  799. DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
  800. DataSourceOauthBinding.provider == 'notion',
  801. DataSourceOauthBinding.disabled == False,
  802. DataSourceOauthBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  803. )
  804. ).first()
  805. if not data_source_binding:
  806. raise ValueError('Data source binding not found.')
  807. for page in notion_info['pages']:
  808. data_source_info = {
  809. "notion_workspace_id": workspace_id,
  810. "notion_page_id": page['page_id'],
  811. "notion_page_icon": page['page_icon'],
  812. "type": page['type']
  813. }
  814. elif document_data["data_source"]["type"] == "website_crawl":
  815. website_info = document_data["data_source"]['info_list']['website_info_list']
  816. urls = website_info['urls']
  817. for url in urls:
  818. data_source_info = {
  819. 'url': url,
  820. 'provider': website_info['provider'],
  821. 'job_id': website_info['job_id'],
  822. 'only_main_content': website_info.get('only_main_content', False),
  823. 'mode': 'crawl',
  824. }
  825. document.data_source_type = document_data["data_source"]["type"]
  826. document.data_source_info = json.dumps(data_source_info)
  827. document.name = file_name
  828. # update document to be waiting
  829. document.indexing_status = 'waiting'
  830. document.completed_at = None
  831. document.processing_started_at = None
  832. document.parsing_completed_at = None
  833. document.cleaning_completed_at = None
  834. document.splitting_completed_at = None
  835. document.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  836. document.created_from = created_from
  837. document.doc_form = document_data['doc_form']
  838. db.session.add(document)
  839. db.session.commit()
  840. # update document segment
  841. update_params = {
  842. DocumentSegment.status: 're_segment'
  843. }
  844. DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
  845. db.session.commit()
  846. # trigger async task
  847. document_indexing_update_task.delay(document.dataset_id, document.id)
  848. return document
  849. @staticmethod
  850. def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
  851. features = FeatureService.get_features(current_user.current_tenant_id)
  852. if features.billing.enabled:
  853. count = 0
  854. if document_data["data_source"]["type"] == "upload_file":
  855. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  856. count = len(upload_file_list)
  857. elif document_data["data_source"]["type"] == "notion_import":
  858. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  859. for notion_info in notion_info_list:
  860. count = count + len(notion_info['pages'])
  861. elif document_data["data_source"]["type"] == "website_crawl":
  862. website_info = document_data["data_source"]['info_list']['website_info_list']
  863. count = len(website_info['urls'])
  864. batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])
  865. if count > batch_upload_limit:
  866. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  867. DocumentService.check_documents_upload_quota(count, features)
  868. embedding_model = None
  869. dataset_collection_binding_id = None
  870. retrieval_model = None
  871. if document_data['indexing_technique'] == 'high_quality':
  872. model_manager = ModelManager()
  873. embedding_model = model_manager.get_default_model_instance(
  874. tenant_id=current_user.current_tenant_id,
  875. model_type=ModelType.TEXT_EMBEDDING
  876. )
  877. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  878. embedding_model.provider,
  879. embedding_model.model
  880. )
  881. dataset_collection_binding_id = dataset_collection_binding.id
  882. if document_data.get('retrieval_model'):
  883. retrieval_model = document_data['retrieval_model']
  884. else:
  885. default_retrieval_model = {
  886. 'search_method': RetrievalMethod.SEMANTIC_SEARCH,
  887. 'reranking_enable': False,
  888. 'reranking_model': {
  889. 'reranking_provider_name': '',
  890. 'reranking_model_name': ''
  891. },
  892. 'top_k': 2,
  893. 'score_threshold_enabled': False
  894. }
  895. retrieval_model = default_retrieval_model
  896. # save dataset
  897. dataset = Dataset(
  898. tenant_id=tenant_id,
  899. name='',
  900. data_source_type=document_data["data_source"]["type"],
  901. indexing_technique=document_data["indexing_technique"],
  902. created_by=account.id,
  903. embedding_model=embedding_model.model if embedding_model else None,
  904. embedding_model_provider=embedding_model.provider if embedding_model else None,
  905. collection_binding_id=dataset_collection_binding_id,
  906. retrieval_model=retrieval_model
  907. )
  908. db.session.add(dataset)
  909. db.session.flush()
  910. documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
  911. cut_length = 18
  912. cut_name = documents[0].name[:cut_length]
  913. dataset.name = cut_name + '...'
  914. dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name
  915. db.session.commit()
  916. return dataset, documents, batch
  917. @classmethod
  918. def document_create_args_validate(cls, args: dict):
  919. if 'original_document_id' not in args or not args['original_document_id']:
  920. DocumentService.data_source_args_validate(args)
  921. DocumentService.process_rule_args_validate(args)
  922. else:
  923. if ('data_source' not in args and not args['data_source']) \
  924. and ('process_rule' not in args and not args['process_rule']):
  925. raise ValueError("Data source or Process rule is required")
  926. else:
  927. if args.get('data_source'):
  928. DocumentService.data_source_args_validate(args)
  929. if args.get('process_rule'):
  930. DocumentService.process_rule_args_validate(args)
  931. @classmethod
  932. def data_source_args_validate(cls, args: dict):
  933. if 'data_source' not in args or not args['data_source']:
  934. raise ValueError("Data source is required")
  935. if not isinstance(args['data_source'], dict):
  936. raise ValueError("Data source is invalid")
  937. if 'type' not in args['data_source'] or not args['data_source']['type']:
  938. raise ValueError("Data source type is required")
  939. if args['data_source']['type'] not in Document.DATA_SOURCES:
  940. raise ValueError("Data source type is invalid")
  941. if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:
  942. raise ValueError("Data source info is required")
  943. if args['data_source']['type'] == 'upload_file':
  944. if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  945. 'file_info_list']:
  946. raise ValueError("File source info is required")
  947. if args['data_source']['type'] == 'notion_import':
  948. if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  949. 'notion_info_list']:
  950. raise ValueError("Notion source info is required")
  951. if args['data_source']['type'] == 'website_crawl':
  952. if 'website_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  953. 'website_info_list']:
  954. raise ValueError("Website source info is required")
  955. @classmethod
  956. def process_rule_args_validate(cls, args: dict):
  957. if 'process_rule' not in args or not args['process_rule']:
  958. raise ValueError("Process rule is required")
  959. if not isinstance(args['process_rule'], dict):
  960. raise ValueError("Process rule is invalid")
  961. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  962. raise ValueError("Process rule mode is required")
  963. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  964. raise ValueError("Process rule mode is invalid")
  965. if args['process_rule']['mode'] == 'automatic':
  966. args['process_rule']['rules'] = {}
  967. else:
  968. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  969. raise ValueError("Process rule rules is required")
  970. if not isinstance(args['process_rule']['rules'], dict):
  971. raise ValueError("Process rule rules is invalid")
  972. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  973. or args['process_rule']['rules']['pre_processing_rules'] is None:
  974. raise ValueError("Process rule pre_processing_rules is required")
  975. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  976. raise ValueError("Process rule pre_processing_rules is invalid")
  977. unique_pre_processing_rule_dicts = {}
  978. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  979. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  980. raise ValueError("Process rule pre_processing_rules id is required")
  981. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  982. raise ValueError("Process rule pre_processing_rules id is invalid")
  983. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  984. raise ValueError("Process rule pre_processing_rules enabled is required")
  985. if not isinstance(pre_processing_rule['enabled'], bool):
  986. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  987. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  988. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  989. if 'segmentation' not in args['process_rule']['rules'] \
  990. or args['process_rule']['rules']['segmentation'] is None:
  991. raise ValueError("Process rule segmentation is required")
  992. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  993. raise ValueError("Process rule segmentation is invalid")
  994. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  995. or not args['process_rule']['rules']['segmentation']['separator']:
  996. raise ValueError("Process rule segmentation separator is required")
  997. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  998. raise ValueError("Process rule segmentation separator is invalid")
  999. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  1000. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  1001. raise ValueError("Process rule segmentation max_tokens is required")
  1002. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  1003. raise ValueError("Process rule segmentation max_tokens is invalid")
  1004. @classmethod
  1005. def estimate_args_validate(cls, args: dict):
  1006. if 'info_list' not in args or not args['info_list']:
  1007. raise ValueError("Data source info is required")
  1008. if not isinstance(args['info_list'], dict):
  1009. raise ValueError("Data info is invalid")
  1010. if 'process_rule' not in args or not args['process_rule']:
  1011. raise ValueError("Process rule is required")
  1012. if not isinstance(args['process_rule'], dict):
  1013. raise ValueError("Process rule is invalid")
  1014. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  1015. raise ValueError("Process rule mode is required")
  1016. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  1017. raise ValueError("Process rule mode is invalid")
  1018. if args['process_rule']['mode'] == 'automatic':
  1019. args['process_rule']['rules'] = {}
  1020. else:
  1021. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  1022. raise ValueError("Process rule rules is required")
  1023. if not isinstance(args['process_rule']['rules'], dict):
  1024. raise ValueError("Process rule rules is invalid")
  1025. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  1026. or args['process_rule']['rules']['pre_processing_rules'] is None:
  1027. raise ValueError("Process rule pre_processing_rules is required")
  1028. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  1029. raise ValueError("Process rule pre_processing_rules is invalid")
  1030. unique_pre_processing_rule_dicts = {}
  1031. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  1032. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  1033. raise ValueError("Process rule pre_processing_rules id is required")
  1034. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  1035. raise ValueError("Process rule pre_processing_rules id is invalid")
  1036. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  1037. raise ValueError("Process rule pre_processing_rules enabled is required")
  1038. if not isinstance(pre_processing_rule['enabled'], bool):
  1039. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  1040. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  1041. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  1042. if 'segmentation' not in args['process_rule']['rules'] \
  1043. or args['process_rule']['rules']['segmentation'] is None:
  1044. raise ValueError("Process rule segmentation is required")
  1045. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  1046. raise ValueError("Process rule segmentation is invalid")
  1047. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  1048. or not args['process_rule']['rules']['segmentation']['separator']:
  1049. raise ValueError("Process rule segmentation separator is required")
  1050. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  1051. raise ValueError("Process rule segmentation separator is invalid")
  1052. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  1053. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  1054. raise ValueError("Process rule segmentation max_tokens is required")
  1055. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  1056. raise ValueError("Process rule segmentation max_tokens is invalid")
  1057. class SegmentService:
  1058. @classmethod
  1059. def segment_create_args_validate(cls, args: dict, document: Document):
  1060. if document.doc_form == 'qa_model':
  1061. if 'answer' not in args or not args['answer']:
  1062. raise ValueError("Answer is required")
  1063. if not args['answer'].strip():
  1064. raise ValueError("Answer is empty")
  1065. if 'content' not in args or not args['content'] or not args['content'].strip():
  1066. raise ValueError("Content is empty")
  1067. @classmethod
  1068. def create_segment(cls, args: dict, document: Document, dataset: Dataset):
  1069. content = args['content']
  1070. doc_id = str(uuid.uuid4())
  1071. segment_hash = helper.generate_text_hash(content)
  1072. tokens = 0
  1073. if dataset.indexing_technique == 'high_quality':
  1074. model_manager = ModelManager()
  1075. embedding_model = model_manager.get_model_instance(
  1076. tenant_id=current_user.current_tenant_id,
  1077. provider=dataset.embedding_model_provider,
  1078. model_type=ModelType.TEXT_EMBEDDING,
  1079. model=dataset.embedding_model
  1080. )
  1081. # calc embedding use tokens
  1082. tokens = embedding_model.get_text_embedding_num_tokens(
  1083. texts=[content]
  1084. )
  1085. lock_name = 'add_segment_lock_document_id_{}'.format(document.id)
  1086. with redis_client.lock(lock_name, timeout=600):
  1087. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  1088. DocumentSegment.document_id == document.id
  1089. ).scalar()
  1090. segment_document = DocumentSegment(
  1091. tenant_id=current_user.current_tenant_id,
  1092. dataset_id=document.dataset_id,
  1093. document_id=document.id,
  1094. index_node_id=doc_id,
  1095. index_node_hash=segment_hash,
  1096. position=max_position + 1 if max_position else 1,
  1097. content=content,
  1098. word_count=len(content),
  1099. tokens=tokens,
  1100. status='completed',
  1101. indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1102. completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1103. created_by=current_user.id
  1104. )
  1105. if document.doc_form == 'qa_model':
  1106. segment_document.answer = args['answer']
  1107. db.session.add(segment_document)
  1108. db.session.commit()
  1109. # save vector index
  1110. try:
  1111. VectorService.create_segments_vector([args['keywords']], [segment_document], dataset)
  1112. except Exception as e:
  1113. logging.exception("create segment index failed")
  1114. segment_document.enabled = False
  1115. segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1116. segment_document.status = 'error'
  1117. segment_document.error = str(e)
  1118. db.session.commit()
  1119. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
  1120. return segment
  1121. @classmethod
  1122. def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
  1123. lock_name = 'multi_add_segment_lock_document_id_{}'.format(document.id)
  1124. with redis_client.lock(lock_name, timeout=600):
  1125. embedding_model = None
  1126. if dataset.indexing_technique == 'high_quality':
  1127. model_manager = ModelManager()
  1128. embedding_model = model_manager.get_model_instance(
  1129. tenant_id=current_user.current_tenant_id,
  1130. provider=dataset.embedding_model_provider,
  1131. model_type=ModelType.TEXT_EMBEDDING,
  1132. model=dataset.embedding_model
  1133. )
  1134. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  1135. DocumentSegment.document_id == document.id
  1136. ).scalar()
  1137. pre_segment_data_list = []
  1138. segment_data_list = []
  1139. keywords_list = []
  1140. for segment_item in segments:
  1141. content = segment_item['content']
  1142. doc_id = str(uuid.uuid4())
  1143. segment_hash = helper.generate_text_hash(content)
  1144. tokens = 0
  1145. if dataset.indexing_technique == 'high_quality' and embedding_model:
  1146. # calc embedding use tokens
  1147. tokens = embedding_model.get_text_embedding_num_tokens(
  1148. texts=[content]
  1149. )
  1150. segment_document = DocumentSegment(
  1151. tenant_id=current_user.current_tenant_id,
  1152. dataset_id=document.dataset_id,
  1153. document_id=document.id,
  1154. index_node_id=doc_id,
  1155. index_node_hash=segment_hash,
  1156. position=max_position + 1 if max_position else 1,
  1157. content=content,
  1158. word_count=len(content),
  1159. tokens=tokens,
  1160. status='completed',
  1161. indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1162. completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1163. created_by=current_user.id
  1164. )
  1165. if document.doc_form == 'qa_model':
  1166. segment_document.answer = segment_item['answer']
  1167. db.session.add(segment_document)
  1168. segment_data_list.append(segment_document)
  1169. pre_segment_data_list.append(segment_document)
  1170. keywords_list.append(segment_item['keywords'])
  1171. try:
  1172. # save vector index
  1173. VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset)
  1174. except Exception as e:
  1175. logging.exception("create segment index failed")
  1176. for segment_document in segment_data_list:
  1177. segment_document.enabled = False
  1178. segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1179. segment_document.status = 'error'
  1180. segment_document.error = str(e)
  1181. db.session.commit()
  1182. return segment_data_list
  1183. @classmethod
  1184. def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):
  1185. indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
  1186. cache_result = redis_client.get(indexing_cache_key)
  1187. if cache_result is not None:
  1188. raise ValueError("Segment is indexing, please try again later")
  1189. if 'enabled' in args and args['enabled'] is not None:
  1190. action = args['enabled']
  1191. if segment.enabled != action:
  1192. if not action:
  1193. segment.enabled = action
  1194. segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1195. segment.disabled_by = current_user.id
  1196. db.session.add(segment)
  1197. db.session.commit()
  1198. # Set cache to prevent indexing the same segment multiple times
  1199. redis_client.setex(indexing_cache_key, 600, 1)
  1200. disable_segment_from_index_task.delay(segment.id)
  1201. return segment
  1202. if not segment.enabled:
  1203. if 'enabled' in args and args['enabled'] is not None:
  1204. if not args['enabled']:
  1205. raise ValueError("Can't update disabled segment")
  1206. else:
  1207. raise ValueError("Can't update disabled segment")
  1208. try:
  1209. content = args['content']
  1210. if segment.content == content:
  1211. if document.doc_form == 'qa_model':
  1212. segment.answer = args['answer']
  1213. if args.get('keywords'):
  1214. segment.keywords = args['keywords']
  1215. segment.enabled = True
  1216. segment.disabled_at = None
  1217. segment.disabled_by = None
  1218. db.session.add(segment)
  1219. db.session.commit()
  1220. # update segment index task
  1221. if args['keywords']:
  1222. keyword = Keyword(dataset)
  1223. keyword.delete_by_ids([segment.index_node_id])
  1224. document = RAGDocument(
  1225. page_content=segment.content,
  1226. metadata={
  1227. "doc_id": segment.index_node_id,
  1228. "doc_hash": segment.index_node_hash,
  1229. "document_id": segment.document_id,
  1230. "dataset_id": segment.dataset_id,
  1231. }
  1232. )
  1233. keyword.add_texts([document], keywords_list=[args['keywords']])
  1234. else:
  1235. segment_hash = helper.generate_text_hash(content)
  1236. tokens = 0
  1237. if dataset.indexing_technique == 'high_quality':
  1238. model_manager = ModelManager()
  1239. embedding_model = model_manager.get_model_instance(
  1240. tenant_id=current_user.current_tenant_id,
  1241. provider=dataset.embedding_model_provider,
  1242. model_type=ModelType.TEXT_EMBEDDING,
  1243. model=dataset.embedding_model
  1244. )
  1245. # calc embedding use tokens
  1246. tokens = embedding_model.get_text_embedding_num_tokens(
  1247. texts=[content]
  1248. )
  1249. segment.content = content
  1250. segment.index_node_hash = segment_hash
  1251. segment.word_count = len(content)
  1252. segment.tokens = tokens
  1253. segment.status = 'completed'
  1254. segment.indexing_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1255. segment.completed_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1256. segment.updated_by = current_user.id
  1257. segment.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1258. segment.enabled = True
  1259. segment.disabled_at = None
  1260. segment.disabled_by = None
  1261. if document.doc_form == 'qa_model':
  1262. segment.answer = args['answer']
  1263. db.session.add(segment)
  1264. db.session.commit()
  1265. # update segment vector index
  1266. VectorService.update_segment_vector(args['keywords'], segment, dataset)
  1267. except Exception as e:
  1268. logging.exception("update segment index failed")
  1269. segment.enabled = False
  1270. segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1271. segment.status = 'error'
  1272. segment.error = str(e)
  1273. db.session.commit()
  1274. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
  1275. return segment
  1276. @classmethod
  1277. def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
  1278. indexing_cache_key = 'segment_{}_delete_indexing'.format(segment.id)
  1279. cache_result = redis_client.get(indexing_cache_key)
  1280. if cache_result is not None:
  1281. raise ValueError("Segment is deleting.")
  1282. # enabled segment need to delete index
  1283. if segment.enabled:
  1284. # send delete segment index task
  1285. redis_client.setex(indexing_cache_key, 600, 1)
  1286. delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)
  1287. db.session.delete(segment)
  1288. db.session.commit()
  1289. class DatasetCollectionBindingService:
  1290. @classmethod
  1291. def get_dataset_collection_binding(cls, provider_name: str, model_name: str,
  1292. collection_type: str = 'dataset') -> DatasetCollectionBinding:
  1293. dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
  1294. filter(DatasetCollectionBinding.provider_name == provider_name,
  1295. DatasetCollectionBinding.model_name == model_name,
  1296. DatasetCollectionBinding.type == collection_type). \
  1297. order_by(DatasetCollectionBinding.created_at). \
  1298. first()
  1299. if not dataset_collection_binding:
  1300. dataset_collection_binding = DatasetCollectionBinding(
  1301. provider_name=provider_name,
  1302. model_name=model_name,
  1303. collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),
  1304. type=collection_type
  1305. )
  1306. db.session.add(dataset_collection_binding)
  1307. db.session.commit()
  1308. return dataset_collection_binding
  1309. @classmethod
  1310. def get_dataset_collection_binding_by_id_and_type(cls, collection_binding_id: str,
  1311. collection_type: str = 'dataset') -> DatasetCollectionBinding:
  1312. dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
  1313. filter(DatasetCollectionBinding.id == collection_binding_id,
  1314. DatasetCollectionBinding.type == collection_type). \
  1315. order_by(DatasetCollectionBinding.created_at). \
  1316. first()
  1317. return dataset_collection_binding