dataset_service.py 56 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263
  1. import datetime
  2. import json
  3. import logging
  4. import random
  5. import time
  6. import uuid
  7. from typing import Optional, cast
  8. from flask import current_app
  9. from flask_login import current_user
  10. from sqlalchemy import func
  11. from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
  12. from core.model_manager import ModelManager
  13. from core.model_runtime.entities.model_entities import ModelType
  14. from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
  15. from core.rag.datasource.keyword.keyword_factory import Keyword
  16. from core.rag.models.document import Document as RAGDocument
  17. from events.dataset_event import dataset_was_deleted
  18. from events.document_event import document_was_deleted
  19. from extensions.ext_database import db
  20. from extensions.ext_redis import redis_client
  21. from libs import helper
  22. from models.account import Account
  23. from models.dataset import (
  24. AppDatasetJoin,
  25. Dataset,
  26. DatasetCollectionBinding,
  27. DatasetProcessRule,
  28. DatasetQuery,
  29. Document,
  30. DocumentSegment,
  31. )
  32. from models.model import UploadFile
  33. from models.source import DataSourceBinding
  34. from services.errors.account import NoPermissionError
  35. from services.errors.dataset import DatasetNameDuplicateError
  36. from services.errors.document import DocumentIndexingError
  37. from services.errors.file import FileNotExistsError
  38. from services.feature_service import FeatureService
  39. from services.vector_service import VectorService
  40. from tasks.clean_notion_document_task import clean_notion_document_task
  41. from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
  42. from tasks.delete_segment_from_index_task import delete_segment_from_index_task
  43. from tasks.document_indexing_task import document_indexing_task
  44. from tasks.document_indexing_update_task import document_indexing_update_task
  45. from tasks.recover_document_indexing_task import recover_document_indexing_task
  46. class DatasetService:
  47. @staticmethod
  48. def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None):
  49. if user:
  50. permission_filter = db.or_(Dataset.created_by == user.id,
  51. Dataset.permission == 'all_team_members')
  52. else:
  53. permission_filter = Dataset.permission == 'all_team_members'
  54. datasets = Dataset.query.filter(
  55. db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \
  56. .order_by(Dataset.created_at.desc()) \
  57. .paginate(
  58. page=page,
  59. per_page=per_page,
  60. max_per_page=100,
  61. error_out=False
  62. )
  63. return datasets.items, datasets.total
  64. @staticmethod
  65. def get_process_rules(dataset_id):
  66. # get the latest process rule
  67. dataset_process_rule = db.session.query(DatasetProcessRule). \
  68. filter(DatasetProcessRule.dataset_id == dataset_id). \
  69. order_by(DatasetProcessRule.created_at.desc()). \
  70. limit(1). \
  71. one_or_none()
  72. if dataset_process_rule:
  73. mode = dataset_process_rule.mode
  74. rules = dataset_process_rule.rules_dict
  75. else:
  76. mode = DocumentService.DEFAULT_RULES['mode']
  77. rules = DocumentService.DEFAULT_RULES['rules']
  78. return {
  79. 'mode': mode,
  80. 'rules': rules
  81. }
  82. @staticmethod
  83. def get_datasets_by_ids(ids, tenant_id):
  84. datasets = Dataset.query.filter(Dataset.id.in_(ids),
  85. Dataset.tenant_id == tenant_id).paginate(
  86. page=1, per_page=len(ids), max_per_page=len(ids), error_out=False)
  87. return datasets.items, datasets.total
  88. @staticmethod
  89. def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
  90. # check if dataset name already exists
  91. if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
  92. raise DatasetNameDuplicateError(
  93. f'Dataset with name {name} already exists.')
  94. embedding_model = None
  95. if indexing_technique == 'high_quality':
  96. model_manager = ModelManager()
  97. embedding_model = model_manager.get_default_model_instance(
  98. tenant_id=tenant_id,
  99. model_type=ModelType.TEXT_EMBEDDING
  100. )
  101. dataset = Dataset(name=name, indexing_technique=indexing_technique)
  102. # dataset = Dataset(name=name, provider=provider, config=config)
  103. dataset.created_by = account.id
  104. dataset.updated_by = account.id
  105. dataset.tenant_id = tenant_id
  106. dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
  107. dataset.embedding_model = embedding_model.model if embedding_model else None
  108. db.session.add(dataset)
  109. db.session.commit()
  110. return dataset
  111. @staticmethod
  112. def get_dataset(dataset_id):
  113. dataset = Dataset.query.filter_by(
  114. id=dataset_id
  115. ).first()
  116. if dataset is None:
  117. return None
  118. else:
  119. return dataset
  120. @staticmethod
  121. def check_dataset_model_setting(dataset):
  122. if dataset.indexing_technique == 'high_quality':
  123. try:
  124. model_manager = ModelManager()
  125. model_manager.get_model_instance(
  126. tenant_id=dataset.tenant_id,
  127. provider=dataset.embedding_model_provider,
  128. model_type=ModelType.TEXT_EMBEDDING,
  129. model=dataset.embedding_model
  130. )
  131. except LLMBadRequestError:
  132. raise ValueError(
  133. "No Embedding Model available. Please configure a valid provider "
  134. "in the Settings -> Model Provider.")
  135. except ProviderTokenNotInitError as ex:
  136. raise ValueError(f"The dataset in unavailable, due to: "
  137. f"{ex.description}")
  138. @staticmethod
  139. def update_dataset(dataset_id, data, user):
  140. filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
  141. dataset = DatasetService.get_dataset(dataset_id)
  142. DatasetService.check_dataset_permission(dataset, user)
  143. action = None
  144. if dataset.indexing_technique != data['indexing_technique']:
  145. # if update indexing_technique
  146. if data['indexing_technique'] == 'economy':
  147. action = 'remove'
  148. filtered_data['embedding_model'] = None
  149. filtered_data['embedding_model_provider'] = None
  150. filtered_data['collection_binding_id'] = None
  151. elif data['indexing_technique'] == 'high_quality':
  152. action = 'add'
  153. # get embedding model setting
  154. try:
  155. model_manager = ModelManager()
  156. embedding_model = model_manager.get_default_model_instance(
  157. tenant_id=current_user.current_tenant_id,
  158. model_type=ModelType.TEXT_EMBEDDING
  159. )
  160. filtered_data['embedding_model'] = embedding_model.model
  161. filtered_data['embedding_model_provider'] = embedding_model.provider
  162. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  163. embedding_model.provider,
  164. embedding_model.model
  165. )
  166. filtered_data['collection_binding_id'] = dataset_collection_binding.id
  167. except LLMBadRequestError:
  168. raise ValueError(
  169. "No Embedding Model available. Please configure a valid provider "
  170. "in the Settings -> Model Provider.")
  171. except ProviderTokenNotInitError as ex:
  172. raise ValueError(ex.description)
  173. filtered_data['updated_by'] = user.id
  174. filtered_data['updated_at'] = datetime.datetime.now()
  175. # update Retrieval model
  176. filtered_data['retrieval_model'] = data['retrieval_model']
  177. dataset.query.filter_by(id=dataset_id).update(filtered_data)
  178. db.session.commit()
  179. if action:
  180. deal_dataset_vector_index_task.delay(dataset_id, action)
  181. return dataset
  182. @staticmethod
  183. def delete_dataset(dataset_id, user):
  184. # todo: cannot delete dataset if it is being processed
  185. dataset = DatasetService.get_dataset(dataset_id)
  186. if dataset is None:
  187. return False
  188. DatasetService.check_dataset_permission(dataset, user)
  189. dataset_was_deleted.send(dataset)
  190. db.session.delete(dataset)
  191. db.session.commit()
  192. return True
  193. @staticmethod
  194. def check_dataset_permission(dataset, user):
  195. if dataset.tenant_id != user.current_tenant_id:
  196. logging.debug(
  197. f'User {user.id} does not have permission to access dataset {dataset.id}')
  198. raise NoPermissionError(
  199. 'You do not have permission to access this dataset.')
  200. if dataset.permission == 'only_me' and dataset.created_by != user.id:
  201. logging.debug(
  202. f'User {user.id} does not have permission to access dataset {dataset.id}')
  203. raise NoPermissionError(
  204. 'You do not have permission to access this dataset.')
  205. @staticmethod
  206. def get_dataset_queries(dataset_id: str, page: int, per_page: int):
  207. dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \
  208. .order_by(db.desc(DatasetQuery.created_at)) \
  209. .paginate(
  210. page=page, per_page=per_page, max_per_page=100, error_out=False
  211. )
  212. return dataset_queries.items, dataset_queries.total
  213. @staticmethod
  214. def get_related_apps(dataset_id: str):
  215. return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \
  216. .order_by(db.desc(AppDatasetJoin.created_at)).all()
  217. class DocumentService:
  218. DEFAULT_RULES = {
  219. 'mode': 'custom',
  220. 'rules': {
  221. 'pre_processing_rules': [
  222. {'id': 'remove_extra_spaces', 'enabled': True},
  223. {'id': 'remove_urls_emails', 'enabled': False}
  224. ],
  225. 'segmentation': {
  226. 'delimiter': '\n',
  227. 'max_tokens': 500,
  228. 'chunk_overlap': 50
  229. }
  230. }
  231. }
  232. DOCUMENT_METADATA_SCHEMA = {
  233. "book": {
  234. "title": str,
  235. "language": str,
  236. "author": str,
  237. "publisher": str,
  238. "publication_date": str,
  239. "isbn": str,
  240. "category": str,
  241. },
  242. "web_page": {
  243. "title": str,
  244. "url": str,
  245. "language": str,
  246. "publish_date": str,
  247. "author/publisher": str,
  248. "topic/keywords": str,
  249. "description": str,
  250. },
  251. "paper": {
  252. "title": str,
  253. "language": str,
  254. "author": str,
  255. "publish_date": str,
  256. "journal/conference_name": str,
  257. "volume/issue/page_numbers": str,
  258. "doi": str,
  259. "topic/keywords": str,
  260. "abstract": str,
  261. },
  262. "social_media_post": {
  263. "platform": str,
  264. "author/username": str,
  265. "publish_date": str,
  266. "post_url": str,
  267. "topic/tags": str,
  268. },
  269. "wikipedia_entry": {
  270. "title": str,
  271. "language": str,
  272. "web_page_url": str,
  273. "last_edit_date": str,
  274. "editor/contributor": str,
  275. "summary/introduction": str,
  276. },
  277. "personal_document": {
  278. "title": str,
  279. "author": str,
  280. "creation_date": str,
  281. "last_modified_date": str,
  282. "document_type": str,
  283. "tags/category": str,
  284. },
  285. "business_document": {
  286. "title": str,
  287. "author": str,
  288. "creation_date": str,
  289. "last_modified_date": str,
  290. "document_type": str,
  291. "department/team": str,
  292. },
  293. "im_chat_log": {
  294. "chat_platform": str,
  295. "chat_participants/group_name": str,
  296. "start_date": str,
  297. "end_date": str,
  298. "summary": str,
  299. },
  300. "synced_from_notion": {
  301. "title": str,
  302. "language": str,
  303. "author/creator": str,
  304. "creation_date": str,
  305. "last_modified_date": str,
  306. "notion_page_link": str,
  307. "category/tags": str,
  308. "description": str,
  309. },
  310. "synced_from_github": {
  311. "repository_name": str,
  312. "repository_description": str,
  313. "repository_owner/organization": str,
  314. "code_filename": str,
  315. "code_file_path": str,
  316. "programming_language": str,
  317. "github_link": str,
  318. "open_source_license": str,
  319. "commit_date": str,
  320. "commit_author": str,
  321. },
  322. "others": dict
  323. }
  324. @staticmethod
  325. def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
  326. document = db.session.query(Document).filter(
  327. Document.id == document_id,
  328. Document.dataset_id == dataset_id
  329. ).first()
  330. return document
  331. @staticmethod
  332. def get_document_by_id(document_id: str) -> Optional[Document]:
  333. document = db.session.query(Document).filter(
  334. Document.id == document_id
  335. ).first()
  336. return document
  337. @staticmethod
  338. def get_document_by_dataset_id(dataset_id: str) -> list[Document]:
  339. documents = db.session.query(Document).filter(
  340. Document.dataset_id == dataset_id,
  341. Document.enabled == True
  342. ).all()
  343. return documents
  344. @staticmethod
  345. def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:
  346. documents = db.session.query(Document).filter(
  347. Document.batch == batch,
  348. Document.dataset_id == dataset_id,
  349. Document.tenant_id == current_user.current_tenant_id
  350. ).all()
  351. return documents
  352. @staticmethod
  353. def get_document_file_detail(file_id: str):
  354. file_detail = db.session.query(UploadFile). \
  355. filter(UploadFile.id == file_id). \
  356. one_or_none()
  357. return file_detail
  358. @staticmethod
  359. def check_archived(document):
  360. if document.archived:
  361. return True
  362. else:
  363. return False
  364. @staticmethod
  365. def delete_document(document):
  366. # trigger document_was_deleted signal
  367. document_was_deleted.send(document.id, dataset_id=document.dataset_id, doc_form=document.doc_form)
  368. db.session.delete(document)
  369. db.session.commit()
  370. @staticmethod
  371. def pause_document(document):
  372. if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
  373. raise DocumentIndexingError()
  374. # update document to be paused
  375. document.is_paused = True
  376. document.paused_by = current_user.id
  377. document.paused_at = datetime.datetime.utcnow()
  378. db.session.add(document)
  379. db.session.commit()
  380. # set document paused flag
  381. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  382. redis_client.setnx(indexing_cache_key, "True")
  383. @staticmethod
  384. def recover_document(document):
  385. if not document.is_paused:
  386. raise DocumentIndexingError()
  387. # update document to be recover
  388. document.is_paused = False
  389. document.paused_by = None
  390. document.paused_at = None
  391. db.session.add(document)
  392. db.session.commit()
  393. # delete paused flag
  394. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  395. redis_client.delete(indexing_cache_key)
  396. # trigger async task
  397. recover_document_indexing_task.delay(document.dataset_id, document.id)
  398. @staticmethod
  399. def get_documents_position(dataset_id):
  400. document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
  401. if document:
  402. return document.position + 1
  403. else:
  404. return 1
  405. @staticmethod
  406. def save_document_with_dataset_id(dataset: Dataset, document_data: dict,
  407. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  408. created_from: str = 'web'):
  409. # check document limit
  410. features = FeatureService.get_features(current_user.current_tenant_id)
  411. if features.billing.enabled:
  412. if 'original_document_id' not in document_data or not document_data['original_document_id']:
  413. count = 0
  414. if document_data["data_source"]["type"] == "upload_file":
  415. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  416. count = len(upload_file_list)
  417. elif document_data["data_source"]["type"] == "notion_import":
  418. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  419. for notion_info in notion_info_list:
  420. count = count + len(notion_info['pages'])
  421. batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])
  422. if count > batch_upload_limit:
  423. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  424. # if dataset is empty, update dataset data_source_type
  425. if not dataset.data_source_type:
  426. dataset.data_source_type = document_data["data_source"]["type"]
  427. if not dataset.indexing_technique:
  428. if 'indexing_technique' not in document_data \
  429. or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:
  430. raise ValueError("Indexing technique is required")
  431. dataset.indexing_technique = document_data["indexing_technique"]
  432. if document_data["indexing_technique"] == 'high_quality':
  433. model_manager = ModelManager()
  434. embedding_model = model_manager.get_default_model_instance(
  435. tenant_id=current_user.current_tenant_id,
  436. model_type=ModelType.TEXT_EMBEDDING
  437. )
  438. dataset.embedding_model = embedding_model.model
  439. dataset.embedding_model_provider = embedding_model.provider
  440. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  441. embedding_model.provider,
  442. embedding_model.model
  443. )
  444. dataset.collection_binding_id = dataset_collection_binding.id
  445. if not dataset.retrieval_model:
  446. default_retrieval_model = {
  447. 'search_method': 'semantic_search',
  448. 'reranking_enable': False,
  449. 'reranking_model': {
  450. 'reranking_provider_name': '',
  451. 'reranking_model_name': ''
  452. },
  453. 'top_k': 2,
  454. 'score_threshold_enabled': False
  455. }
  456. dataset.retrieval_model = document_data.get('retrieval_model') if document_data.get(
  457. 'retrieval_model') else default_retrieval_model
  458. documents = []
  459. batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))
  460. if 'original_document_id' in document_data and document_data["original_document_id"]:
  461. document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
  462. documents.append(document)
  463. else:
  464. # save process rule
  465. if not dataset_process_rule:
  466. process_rule = document_data["process_rule"]
  467. if process_rule["mode"] == "custom":
  468. dataset_process_rule = DatasetProcessRule(
  469. dataset_id=dataset.id,
  470. mode=process_rule["mode"],
  471. rules=json.dumps(process_rule["rules"]),
  472. created_by=account.id
  473. )
  474. elif process_rule["mode"] == "automatic":
  475. dataset_process_rule = DatasetProcessRule(
  476. dataset_id=dataset.id,
  477. mode=process_rule["mode"],
  478. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  479. created_by=account.id
  480. )
  481. db.session.add(dataset_process_rule)
  482. db.session.commit()
  483. position = DocumentService.get_documents_position(dataset.id)
  484. document_ids = []
  485. if document_data["data_source"]["type"] == "upload_file":
  486. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  487. for file_id in upload_file_list:
  488. file = db.session.query(UploadFile).filter(
  489. UploadFile.tenant_id == dataset.tenant_id,
  490. UploadFile.id == file_id
  491. ).first()
  492. # raise error if file not found
  493. if not file:
  494. raise FileNotExistsError()
  495. file_name = file.name
  496. data_source_info = {
  497. "upload_file_id": file_id,
  498. }
  499. document = DocumentService.build_document(dataset, dataset_process_rule.id,
  500. document_data["data_source"]["type"],
  501. document_data["doc_form"],
  502. document_data["doc_language"],
  503. data_source_info, created_from, position,
  504. account, file_name, batch)
  505. db.session.add(document)
  506. db.session.flush()
  507. document_ids.append(document.id)
  508. documents.append(document)
  509. position += 1
  510. elif document_data["data_source"]["type"] == "notion_import":
  511. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  512. exist_page_ids = []
  513. exist_document = dict()
  514. documents = Document.query.filter_by(
  515. dataset_id=dataset.id,
  516. tenant_id=current_user.current_tenant_id,
  517. data_source_type='notion_import',
  518. enabled=True
  519. ).all()
  520. if documents:
  521. for document in documents:
  522. data_source_info = json.loads(document.data_source_info)
  523. exist_page_ids.append(data_source_info['notion_page_id'])
  524. exist_document[data_source_info['notion_page_id']] = document.id
  525. for notion_info in notion_info_list:
  526. workspace_id = notion_info['workspace_id']
  527. data_source_binding = DataSourceBinding.query.filter(
  528. db.and_(
  529. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  530. DataSourceBinding.provider == 'notion',
  531. DataSourceBinding.disabled == False,
  532. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  533. )
  534. ).first()
  535. if not data_source_binding:
  536. raise ValueError('Data source binding not found.')
  537. for page in notion_info['pages']:
  538. if page['page_id'] not in exist_page_ids:
  539. data_source_info = {
  540. "notion_workspace_id": workspace_id,
  541. "notion_page_id": page['page_id'],
  542. "notion_page_icon": page['page_icon'],
  543. "type": page['type']
  544. }
  545. document = DocumentService.build_document(dataset, dataset_process_rule.id,
  546. document_data["data_source"]["type"],
  547. document_data["doc_form"],
  548. document_data["doc_language"],
  549. data_source_info, created_from, position,
  550. account, page['page_name'], batch)
  551. db.session.add(document)
  552. db.session.flush()
  553. document_ids.append(document.id)
  554. documents.append(document)
  555. position += 1
  556. else:
  557. exist_document.pop(page['page_id'])
  558. # delete not selected documents
  559. if len(exist_document) > 0:
  560. clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
  561. db.session.commit()
  562. # trigger async task
  563. document_indexing_task.delay(dataset.id, document_ids)
  564. return documents, batch
  565. @staticmethod
  566. def build_document(dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,
  567. document_language: str, data_source_info: dict, created_from: str, position: int,
  568. account: Account,
  569. name: str, batch: str):
  570. document = Document(
  571. tenant_id=dataset.tenant_id,
  572. dataset_id=dataset.id,
  573. position=position,
  574. data_source_type=data_source_type,
  575. data_source_info=json.dumps(data_source_info),
  576. dataset_process_rule_id=process_rule_id,
  577. batch=batch,
  578. name=name,
  579. created_from=created_from,
  580. created_by=account.id,
  581. doc_form=document_form,
  582. doc_language=document_language
  583. )
  584. return document
  585. @staticmethod
  586. def get_tenant_documents_count():
  587. documents_count = Document.query.filter(Document.completed_at.isnot(None),
  588. Document.enabled == True,
  589. Document.archived == False,
  590. Document.tenant_id == current_user.current_tenant_id).count()
  591. return documents_count
  592. @staticmethod
  593. def update_document_with_dataset_id(dataset: Dataset, document_data: dict,
  594. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  595. created_from: str = 'web'):
  596. DatasetService.check_dataset_model_setting(dataset)
  597. document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
  598. if document.display_status != 'available':
  599. raise ValueError("Document is not available")
  600. # update document name
  601. if 'name' in document_data and document_data['name']:
  602. document.name = document_data['name']
  603. # save process rule
  604. if 'process_rule' in document_data and document_data['process_rule']:
  605. process_rule = document_data["process_rule"]
  606. if process_rule["mode"] == "custom":
  607. dataset_process_rule = DatasetProcessRule(
  608. dataset_id=dataset.id,
  609. mode=process_rule["mode"],
  610. rules=json.dumps(process_rule["rules"]),
  611. created_by=account.id
  612. )
  613. elif process_rule["mode"] == "automatic":
  614. dataset_process_rule = DatasetProcessRule(
  615. dataset_id=dataset.id,
  616. mode=process_rule["mode"],
  617. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  618. created_by=account.id
  619. )
  620. db.session.add(dataset_process_rule)
  621. db.session.commit()
  622. document.dataset_process_rule_id = dataset_process_rule.id
  623. # update document data source
  624. if 'data_source' in document_data and document_data['data_source']:
  625. file_name = ''
  626. data_source_info = {}
  627. if document_data["data_source"]["type"] == "upload_file":
  628. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  629. for file_id in upload_file_list:
  630. file = db.session.query(UploadFile).filter(
  631. UploadFile.tenant_id == dataset.tenant_id,
  632. UploadFile.id == file_id
  633. ).first()
  634. # raise error if file not found
  635. if not file:
  636. raise FileNotExistsError()
  637. file_name = file.name
  638. data_source_info = {
  639. "upload_file_id": file_id,
  640. }
  641. elif document_data["data_source"]["type"] == "notion_import":
  642. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  643. for notion_info in notion_info_list:
  644. workspace_id = notion_info['workspace_id']
  645. data_source_binding = DataSourceBinding.query.filter(
  646. db.and_(
  647. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  648. DataSourceBinding.provider == 'notion',
  649. DataSourceBinding.disabled == False,
  650. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  651. )
  652. ).first()
  653. if not data_source_binding:
  654. raise ValueError('Data source binding not found.')
  655. for page in notion_info['pages']:
  656. data_source_info = {
  657. "notion_workspace_id": workspace_id,
  658. "notion_page_id": page['page_id'],
  659. "notion_page_icon": page['page_icon'],
  660. "type": page['type']
  661. }
  662. document.data_source_type = document_data["data_source"]["type"]
  663. document.data_source_info = json.dumps(data_source_info)
  664. document.name = file_name
  665. # update document to be waiting
  666. document.indexing_status = 'waiting'
  667. document.completed_at = None
  668. document.processing_started_at = None
  669. document.parsing_completed_at = None
  670. document.cleaning_completed_at = None
  671. document.splitting_completed_at = None
  672. document.updated_at = datetime.datetime.utcnow()
  673. document.created_from = created_from
  674. document.doc_form = document_data['doc_form']
  675. db.session.add(document)
  676. db.session.commit()
  677. # update document segment
  678. update_params = {
  679. DocumentSegment.status: 're_segment'
  680. }
  681. DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
  682. db.session.commit()
  683. # trigger async task
  684. document_indexing_update_task.delay(document.dataset_id, document.id)
  685. return document
  686. @staticmethod
  687. def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
  688. features = FeatureService.get_features(current_user.current_tenant_id)
  689. if features.billing.enabled:
  690. count = 0
  691. if document_data["data_source"]["type"] == "upload_file":
  692. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  693. count = len(upload_file_list)
  694. elif document_data["data_source"]["type"] == "notion_import":
  695. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  696. for notion_info in notion_info_list:
  697. count = count + len(notion_info['pages'])
  698. batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])
  699. if count > batch_upload_limit:
  700. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  701. embedding_model = None
  702. dataset_collection_binding_id = None
  703. retrieval_model = None
  704. if document_data['indexing_technique'] == 'high_quality':
  705. model_manager = ModelManager()
  706. embedding_model = model_manager.get_default_model_instance(
  707. tenant_id=current_user.current_tenant_id,
  708. model_type=ModelType.TEXT_EMBEDDING
  709. )
  710. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  711. embedding_model.provider,
  712. embedding_model.model
  713. )
  714. dataset_collection_binding_id = dataset_collection_binding.id
  715. if 'retrieval_model' in document_data and document_data['retrieval_model']:
  716. retrieval_model = document_data['retrieval_model']
  717. else:
  718. default_retrieval_model = {
  719. 'search_method': 'semantic_search',
  720. 'reranking_enable': False,
  721. 'reranking_model': {
  722. 'reranking_provider_name': '',
  723. 'reranking_model_name': ''
  724. },
  725. 'top_k': 2,
  726. 'score_threshold_enabled': False
  727. }
  728. retrieval_model = default_retrieval_model
  729. # save dataset
  730. dataset = Dataset(
  731. tenant_id=tenant_id,
  732. name='',
  733. data_source_type=document_data["data_source"]["type"],
  734. indexing_technique=document_data["indexing_technique"],
  735. created_by=account.id,
  736. embedding_model=embedding_model.model if embedding_model else None,
  737. embedding_model_provider=embedding_model.provider if embedding_model else None,
  738. collection_binding_id=dataset_collection_binding_id,
  739. retrieval_model=retrieval_model
  740. )
  741. db.session.add(dataset)
  742. db.session.flush()
  743. documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
  744. cut_length = 18
  745. cut_name = documents[0].name[:cut_length]
  746. dataset.name = cut_name + '...'
  747. dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name
  748. db.session.commit()
  749. return dataset, documents, batch
  750. @classmethod
  751. def document_create_args_validate(cls, args: dict):
  752. if 'original_document_id' not in args or not args['original_document_id']:
  753. DocumentService.data_source_args_validate(args)
  754. DocumentService.process_rule_args_validate(args)
  755. else:
  756. if ('data_source' not in args and not args['data_source']) \
  757. and ('process_rule' not in args and not args['process_rule']):
  758. raise ValueError("Data source or Process rule is required")
  759. else:
  760. if 'data_source' in args and args['data_source']:
  761. DocumentService.data_source_args_validate(args)
  762. if 'process_rule' in args and args['process_rule']:
  763. DocumentService.process_rule_args_validate(args)
  764. @classmethod
  765. def data_source_args_validate(cls, args: dict):
  766. if 'data_source' not in args or not args['data_source']:
  767. raise ValueError("Data source is required")
  768. if not isinstance(args['data_source'], dict):
  769. raise ValueError("Data source is invalid")
  770. if 'type' not in args['data_source'] or not args['data_source']['type']:
  771. raise ValueError("Data source type is required")
  772. if args['data_source']['type'] not in Document.DATA_SOURCES:
  773. raise ValueError("Data source type is invalid")
  774. if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:
  775. raise ValueError("Data source info is required")
  776. if args['data_source']['type'] == 'upload_file':
  777. if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  778. 'file_info_list']:
  779. raise ValueError("File source info is required")
  780. if args['data_source']['type'] == 'notion_import':
  781. if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  782. 'notion_info_list']:
  783. raise ValueError("Notion source info is required")
  784. @classmethod
  785. def process_rule_args_validate(cls, args: dict):
  786. if 'process_rule' not in args or not args['process_rule']:
  787. raise ValueError("Process rule is required")
  788. if not isinstance(args['process_rule'], dict):
  789. raise ValueError("Process rule is invalid")
  790. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  791. raise ValueError("Process rule mode is required")
  792. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  793. raise ValueError("Process rule mode is invalid")
  794. if args['process_rule']['mode'] == 'automatic':
  795. args['process_rule']['rules'] = {}
  796. else:
  797. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  798. raise ValueError("Process rule rules is required")
  799. if not isinstance(args['process_rule']['rules'], dict):
  800. raise ValueError("Process rule rules is invalid")
  801. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  802. or args['process_rule']['rules']['pre_processing_rules'] is None:
  803. raise ValueError("Process rule pre_processing_rules is required")
  804. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  805. raise ValueError("Process rule pre_processing_rules is invalid")
  806. unique_pre_processing_rule_dicts = {}
  807. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  808. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  809. raise ValueError("Process rule pre_processing_rules id is required")
  810. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  811. raise ValueError("Process rule pre_processing_rules id is invalid")
  812. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  813. raise ValueError("Process rule pre_processing_rules enabled is required")
  814. if not isinstance(pre_processing_rule['enabled'], bool):
  815. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  816. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  817. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  818. if 'segmentation' not in args['process_rule']['rules'] \
  819. or args['process_rule']['rules']['segmentation'] is None:
  820. raise ValueError("Process rule segmentation is required")
  821. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  822. raise ValueError("Process rule segmentation is invalid")
  823. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  824. or not args['process_rule']['rules']['segmentation']['separator']:
  825. raise ValueError("Process rule segmentation separator is required")
  826. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  827. raise ValueError("Process rule segmentation separator is invalid")
  828. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  829. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  830. raise ValueError("Process rule segmentation max_tokens is required")
  831. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  832. raise ValueError("Process rule segmentation max_tokens is invalid")
  833. @classmethod
  834. def estimate_args_validate(cls, args: dict):
  835. if 'info_list' not in args or not args['info_list']:
  836. raise ValueError("Data source info is required")
  837. if not isinstance(args['info_list'], dict):
  838. raise ValueError("Data info is invalid")
  839. if 'process_rule' not in args or not args['process_rule']:
  840. raise ValueError("Process rule is required")
  841. if not isinstance(args['process_rule'], dict):
  842. raise ValueError("Process rule is invalid")
  843. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  844. raise ValueError("Process rule mode is required")
  845. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  846. raise ValueError("Process rule mode is invalid")
  847. if args['process_rule']['mode'] == 'automatic':
  848. args['process_rule']['rules'] = {}
  849. else:
  850. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  851. raise ValueError("Process rule rules is required")
  852. if not isinstance(args['process_rule']['rules'], dict):
  853. raise ValueError("Process rule rules is invalid")
  854. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  855. or args['process_rule']['rules']['pre_processing_rules'] is None:
  856. raise ValueError("Process rule pre_processing_rules is required")
  857. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  858. raise ValueError("Process rule pre_processing_rules is invalid")
  859. unique_pre_processing_rule_dicts = {}
  860. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  861. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  862. raise ValueError("Process rule pre_processing_rules id is required")
  863. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  864. raise ValueError("Process rule pre_processing_rules id is invalid")
  865. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  866. raise ValueError("Process rule pre_processing_rules enabled is required")
  867. if not isinstance(pre_processing_rule['enabled'], bool):
  868. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  869. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  870. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  871. if 'segmentation' not in args['process_rule']['rules'] \
  872. or args['process_rule']['rules']['segmentation'] is None:
  873. raise ValueError("Process rule segmentation is required")
  874. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  875. raise ValueError("Process rule segmentation is invalid")
  876. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  877. or not args['process_rule']['rules']['segmentation']['separator']:
  878. raise ValueError("Process rule segmentation separator is required")
  879. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  880. raise ValueError("Process rule segmentation separator is invalid")
  881. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  882. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  883. raise ValueError("Process rule segmentation max_tokens is required")
  884. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  885. raise ValueError("Process rule segmentation max_tokens is invalid")
  886. class SegmentService:
  887. @classmethod
  888. def segment_create_args_validate(cls, args: dict, document: Document):
  889. if document.doc_form == 'qa_model':
  890. if 'answer' not in args or not args['answer']:
  891. raise ValueError("Answer is required")
  892. if not args['answer'].strip():
  893. raise ValueError("Answer is empty")
  894. if 'content' not in args or not args['content'] or not args['content'].strip():
  895. raise ValueError("Content is empty")
  896. @classmethod
  897. def create_segment(cls, args: dict, document: Document, dataset: Dataset):
  898. content = args['content']
  899. doc_id = str(uuid.uuid4())
  900. segment_hash = helper.generate_text_hash(content)
  901. tokens = 0
  902. if dataset.indexing_technique == 'high_quality':
  903. model_manager = ModelManager()
  904. embedding_model = model_manager.get_model_instance(
  905. tenant_id=current_user.current_tenant_id,
  906. provider=dataset.embedding_model_provider,
  907. model_type=ModelType.TEXT_EMBEDDING,
  908. model=dataset.embedding_model
  909. )
  910. # calc embedding use tokens
  911. model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
  912. tokens = model_type_instance.get_num_tokens(
  913. model=embedding_model.model,
  914. credentials=embedding_model.credentials,
  915. texts=[content]
  916. )
  917. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  918. DocumentSegment.document_id == document.id
  919. ).scalar()
  920. segment_document = DocumentSegment(
  921. tenant_id=current_user.current_tenant_id,
  922. dataset_id=document.dataset_id,
  923. document_id=document.id,
  924. index_node_id=doc_id,
  925. index_node_hash=segment_hash,
  926. position=max_position + 1 if max_position else 1,
  927. content=content,
  928. word_count=len(content),
  929. tokens=tokens,
  930. status='completed',
  931. indexing_at=datetime.datetime.utcnow(),
  932. completed_at=datetime.datetime.utcnow(),
  933. created_by=current_user.id
  934. )
  935. if document.doc_form == 'qa_model':
  936. segment_document.answer = args['answer']
  937. db.session.add(segment_document)
  938. db.session.commit()
  939. # save vector index
  940. try:
  941. VectorService.create_segments_vector([args['keywords']], [segment_document], dataset)
  942. except Exception as e:
  943. logging.exception("create segment index failed")
  944. segment_document.enabled = False
  945. segment_document.disabled_at = datetime.datetime.utcnow()
  946. segment_document.status = 'error'
  947. segment_document.error = str(e)
  948. db.session.commit()
  949. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
  950. return segment
  951. @classmethod
  952. def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
  953. embedding_model = None
  954. if dataset.indexing_technique == 'high_quality':
  955. model_manager = ModelManager()
  956. embedding_model = model_manager.get_model_instance(
  957. tenant_id=current_user.current_tenant_id,
  958. provider=dataset.embedding_model_provider,
  959. model_type=ModelType.TEXT_EMBEDDING,
  960. model=dataset.embedding_model
  961. )
  962. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  963. DocumentSegment.document_id == document.id
  964. ).scalar()
  965. pre_segment_data_list = []
  966. segment_data_list = []
  967. keywords_list = []
  968. for segment_item in segments:
  969. content = segment_item['content']
  970. doc_id = str(uuid.uuid4())
  971. segment_hash = helper.generate_text_hash(content)
  972. tokens = 0
  973. if dataset.indexing_technique == 'high_quality' and embedding_model:
  974. # calc embedding use tokens
  975. model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
  976. tokens = model_type_instance.get_num_tokens(
  977. model=embedding_model.model,
  978. credentials=embedding_model.credentials,
  979. texts=[content]
  980. )
  981. segment_document = DocumentSegment(
  982. tenant_id=current_user.current_tenant_id,
  983. dataset_id=document.dataset_id,
  984. document_id=document.id,
  985. index_node_id=doc_id,
  986. index_node_hash=segment_hash,
  987. position=max_position + 1 if max_position else 1,
  988. content=content,
  989. word_count=len(content),
  990. tokens=tokens,
  991. status='completed',
  992. indexing_at=datetime.datetime.utcnow(),
  993. completed_at=datetime.datetime.utcnow(),
  994. created_by=current_user.id
  995. )
  996. if document.doc_form == 'qa_model':
  997. segment_document.answer = segment_item['answer']
  998. db.session.add(segment_document)
  999. segment_data_list.append(segment_document)
  1000. pre_segment_data_list.append(segment_document)
  1001. keywords_list.append(segment_item['keywords'])
  1002. try:
  1003. # save vector index
  1004. VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset)
  1005. except Exception as e:
  1006. logging.exception("create segment index failed")
  1007. for segment_document in segment_data_list:
  1008. segment_document.enabled = False
  1009. segment_document.disabled_at = datetime.datetime.utcnow()
  1010. segment_document.status = 'error'
  1011. segment_document.error = str(e)
  1012. db.session.commit()
  1013. return segment_data_list
  1014. @classmethod
  1015. def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):
  1016. indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
  1017. cache_result = redis_client.get(indexing_cache_key)
  1018. if cache_result is not None:
  1019. raise ValueError("Segment is indexing, please try again later")
  1020. try:
  1021. content = args['content']
  1022. if segment.content == content:
  1023. if document.doc_form == 'qa_model':
  1024. segment.answer = args['answer']
  1025. if 'keywords' in args and args['keywords']:
  1026. segment.keywords = args['keywords']
  1027. if 'enabled' in args and args['enabled'] is not None:
  1028. segment.enabled = args['enabled']
  1029. db.session.add(segment)
  1030. db.session.commit()
  1031. # update segment index task
  1032. if args['keywords']:
  1033. keyword = Keyword(dataset)
  1034. keyword.delete_by_ids([segment.index_node_id])
  1035. document = RAGDocument(
  1036. page_content=segment.content,
  1037. metadata={
  1038. "doc_id": segment.index_node_id,
  1039. "doc_hash": segment.index_node_hash,
  1040. "document_id": segment.document_id,
  1041. "dataset_id": segment.dataset_id,
  1042. }
  1043. )
  1044. keyword.add_texts([document], keywords_list=[args['keywords']])
  1045. else:
  1046. segment_hash = helper.generate_text_hash(content)
  1047. tokens = 0
  1048. if dataset.indexing_technique == 'high_quality':
  1049. model_manager = ModelManager()
  1050. embedding_model = model_manager.get_model_instance(
  1051. tenant_id=current_user.current_tenant_id,
  1052. provider=dataset.embedding_model_provider,
  1053. model_type=ModelType.TEXT_EMBEDDING,
  1054. model=dataset.embedding_model
  1055. )
  1056. # calc embedding use tokens
  1057. model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
  1058. tokens = model_type_instance.get_num_tokens(
  1059. model=embedding_model.model,
  1060. credentials=embedding_model.credentials,
  1061. texts=[content]
  1062. )
  1063. segment.content = content
  1064. segment.index_node_hash = segment_hash
  1065. segment.word_count = len(content)
  1066. segment.tokens = tokens
  1067. segment.status = 'completed'
  1068. segment.indexing_at = datetime.datetime.utcnow()
  1069. segment.completed_at = datetime.datetime.utcnow()
  1070. segment.updated_by = current_user.id
  1071. segment.updated_at = datetime.datetime.utcnow()
  1072. if document.doc_form == 'qa_model':
  1073. segment.answer = args['answer']
  1074. db.session.add(segment)
  1075. db.session.commit()
  1076. # update segment vector index
  1077. VectorService.update_segment_vector(args['keywords'], segment, dataset)
  1078. except Exception as e:
  1079. logging.exception("update segment index failed")
  1080. segment.enabled = False
  1081. segment.disabled_at = datetime.datetime.utcnow()
  1082. segment.status = 'error'
  1083. segment.error = str(e)
  1084. db.session.commit()
  1085. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
  1086. return segment
  1087. @classmethod
  1088. def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
  1089. indexing_cache_key = 'segment_{}_delete_indexing'.format(segment.id)
  1090. cache_result = redis_client.get(indexing_cache_key)
  1091. if cache_result is not None:
  1092. raise ValueError("Segment is deleting.")
  1093. # enabled segment need to delete index
  1094. if segment.enabled:
  1095. # send delete segment index task
  1096. redis_client.setex(indexing_cache_key, 600, 1)
  1097. delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)
  1098. db.session.delete(segment)
  1099. db.session.commit()
  1100. class DatasetCollectionBindingService:
  1101. @classmethod
  1102. def get_dataset_collection_binding(cls, provider_name: str, model_name: str,
  1103. collection_type: str = 'dataset') -> DatasetCollectionBinding:
  1104. dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
  1105. filter(DatasetCollectionBinding.provider_name == provider_name,
  1106. DatasetCollectionBinding.model_name == model_name,
  1107. DatasetCollectionBinding.type == collection_type). \
  1108. order_by(DatasetCollectionBinding.created_at). \
  1109. first()
  1110. if not dataset_collection_binding:
  1111. dataset_collection_binding = DatasetCollectionBinding(
  1112. provider_name=provider_name,
  1113. model_name=model_name,
  1114. collection_name="Vector_index_" + str(uuid.uuid4()).replace("-", "_") + '_Node',
  1115. type=collection_type
  1116. )
  1117. db.session.add(dataset_collection_binding)
  1118. db.session.commit()
  1119. return dataset_collection_binding
  1120. @classmethod
  1121. def get_dataset_collection_binding_by_id_and_type(cls, collection_binding_id: str,
  1122. collection_type: str = 'dataset') -> DatasetCollectionBinding:
  1123. dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
  1124. filter(DatasetCollectionBinding.id == collection_binding_id,
  1125. DatasetCollectionBinding.type == collection_type). \
  1126. order_by(DatasetCollectionBinding.created_at). \
  1127. first()
  1128. return dataset_collection_binding