retrieval_service.py 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165
  1. import threading
  2. from typing import Optional
  3. from flask import Flask, current_app
  4. from flask_login import current_user
  5. from core.rag.data_post_processor.data_post_processor import DataPostProcessor
  6. from core.rag.datasource.keyword.keyword_factory import Keyword
  7. from core.rag.datasource.vdb.vector_factory import Vector
  8. from extensions.ext_database import db
  9. from models.dataset import Dataset
  10. default_retrieval_model = {
  11. 'search_method': 'semantic_search',
  12. 'reranking_enable': False,
  13. 'reranking_model': {
  14. 'reranking_provider_name': '',
  15. 'reranking_model_name': ''
  16. },
  17. 'top_k': 2,
  18. 'score_threshold_enabled': False
  19. }
  20. class RetrievalService:
  21. @classmethod
  22. def retrieve(cls, retrival_method: str, dataset_id: str, query: str,
  23. top_k: int, score_threshold: Optional[float] = .0, reranking_model: Optional[dict] = None):
  24. all_documents = []
  25. threads = []
  26. # retrieval_model source with keyword
  27. if retrival_method == 'keyword_search':
  28. keyword_thread = threading.Thread(target=RetrievalService.keyword_search, kwargs={
  29. 'flask_app': current_app._get_current_object(),
  30. 'dataset_id': dataset_id,
  31. 'query': query,
  32. 'top_k': top_k
  33. })
  34. threads.append(keyword_thread)
  35. keyword_thread.start()
  36. # retrieval_model source with semantic
  37. if retrival_method == 'semantic_search' or retrival_method == 'hybrid_search':
  38. embedding_thread = threading.Thread(target=RetrievalService.embedding_search, kwargs={
  39. 'flask_app': current_app._get_current_object(),
  40. 'dataset_id': dataset_id,
  41. 'query': query,
  42. 'top_k': top_k,
  43. 'score_threshold': score_threshold,
  44. 'reranking_model': reranking_model,
  45. 'all_documents': all_documents,
  46. 'retrival_method': retrival_method
  47. })
  48. threads.append(embedding_thread)
  49. embedding_thread.start()
  50. # retrieval source with full text
  51. if retrival_method == 'full_text_search' or retrival_method == 'hybrid_search':
  52. full_text_index_thread = threading.Thread(target=RetrievalService.full_text_index_search, kwargs={
  53. 'flask_app': current_app._get_current_object(),
  54. 'dataset_id': dataset_id,
  55. 'query': query,
  56. 'retrival_method': retrival_method,
  57. 'score_threshold': score_threshold,
  58. 'top_k': top_k,
  59. 'reranking_model': reranking_model,
  60. 'all_documents': all_documents
  61. })
  62. threads.append(full_text_index_thread)
  63. full_text_index_thread.start()
  64. for thread in threads:
  65. thread.join()
  66. if retrival_method == 'hybrid_search':
  67. data_post_processor = DataPostProcessor(str(current_user.current_tenant_id), reranking_model, False)
  68. all_documents = data_post_processor.invoke(
  69. query=query,
  70. documents=all_documents,
  71. score_threshold=score_threshold,
  72. top_n=top_k
  73. )
  74. return all_documents
  75. @classmethod
  76. def keyword_search(cls, flask_app: Flask, dataset_id: str, query: str,
  77. top_k: int, all_documents: list):
  78. with flask_app.app_context():
  79. dataset = db.session.query(Dataset).filter(
  80. Dataset.id == dataset_id
  81. ).first()
  82. keyword = Keyword(
  83. dataset=dataset
  84. )
  85. documents = keyword.search(
  86. query,
  87. k=top_k
  88. )
  89. all_documents.extend(documents)
  90. @classmethod
  91. def embedding_search(cls, flask_app: Flask, dataset_id: str, query: str,
  92. top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
  93. all_documents: list, retrival_method: str):
  94. with flask_app.app_context():
  95. dataset = db.session.query(Dataset).filter(
  96. Dataset.id == dataset_id
  97. ).first()
  98. vector = Vector(
  99. dataset=dataset
  100. )
  101. documents = vector.search_by_vector(
  102. query,
  103. search_type='similarity_score_threshold',
  104. k=top_k,
  105. score_threshold=score_threshold,
  106. filter={
  107. 'group_id': [dataset.id]
  108. }
  109. )
  110. if documents:
  111. if reranking_model and retrival_method == 'semantic_search':
  112. data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
  113. all_documents.extend(data_post_processor.invoke(
  114. query=query,
  115. documents=documents,
  116. score_threshold=score_threshold,
  117. top_n=len(documents)
  118. ))
  119. else:
  120. all_documents.extend(documents)
  121. @classmethod
  122. def full_text_index_search(cls, flask_app: Flask, dataset_id: str, query: str,
  123. top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
  124. all_documents: list, retrival_method: str):
  125. with flask_app.app_context():
  126. dataset = db.session.query(Dataset).filter(
  127. Dataset.id == dataset_id
  128. ).first()
  129. vector_processor = Vector(
  130. dataset=dataset,
  131. )
  132. documents = vector_processor.search_by_full_text(
  133. query,
  134. top_k=top_k
  135. )
  136. if documents:
  137. if reranking_model and retrival_method == 'full_text_search':
  138. data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
  139. all_documents.extend(data_post_processor.invoke(
  140. query=query,
  141. documents=documents,
  142. score_threshold=score_threshold,
  143. top_n=len(documents)
  144. ))
  145. else:
  146. all_documents.extend(documents)