weight_rerank.py 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184
  1. import math
  2. from collections import Counter
  3. from typing import Optional
  4. import numpy as np
  5. from core.model_manager import ModelManager
  6. from core.model_runtime.entities.model_entities import ModelType
  7. from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaKeywordTableHandler
  8. from core.rag.embedding.cached_embedding import CacheEmbedding
  9. from core.rag.models.document import Document
  10. from core.rag.rerank.entity.weight import VectorSetting, Weights
  11. from core.rag.rerank.rerank_base import BaseRerankRunner
  12. class WeightRerankRunner(BaseRerankRunner):
  13. def __init__(self, tenant_id: str, weights: Weights) -> None:
  14. self.tenant_id = tenant_id
  15. self.weights = weights
  16. def run(
  17. self,
  18. query: str,
  19. documents: list[Document],
  20. score_threshold: Optional[float] = None,
  21. top_n: Optional[int] = None,
  22. user: Optional[str] = None,
  23. ) -> list[Document]:
  24. """
  25. Run rerank model
  26. :param query: search query
  27. :param documents: documents for reranking
  28. :param score_threshold: score threshold
  29. :param top_n: top n
  30. :param user: unique user id if needed
  31. :return:
  32. """
  33. unique_documents = []
  34. doc_id = set()
  35. for document in documents:
  36. doc_id = document.metadata.get("doc_id")
  37. if doc_id not in doc_id:
  38. doc_id.add(doc_id)
  39. unique_documents.append(document)
  40. documents = unique_documents
  41. query_scores = self._calculate_keyword_score(query, documents)
  42. query_vector_scores = self._calculate_cosine(self.tenant_id, query, documents, self.weights.vector_setting)
  43. rerank_documents = []
  44. for document, query_score, query_vector_score in zip(documents, query_scores, query_vector_scores):
  45. score = (
  46. self.weights.vector_setting.vector_weight * query_vector_score
  47. + self.weights.keyword_setting.keyword_weight * query_score
  48. )
  49. if score_threshold and score < score_threshold:
  50. continue
  51. document.metadata["score"] = score
  52. rerank_documents.append(document)
  53. rerank_documents.sort(key=lambda x: x.metadata["score"], reverse=True)
  54. return rerank_documents[:top_n] if top_n else rerank_documents
  55. def _calculate_keyword_score(self, query: str, documents: list[Document]) -> list[float]:
  56. """
  57. Calculate BM25 scores
  58. :param query: search query
  59. :param documents: documents for reranking
  60. :return:
  61. """
  62. keyword_table_handler = JiebaKeywordTableHandler()
  63. query_keywords = keyword_table_handler.extract_keywords(query, None)
  64. documents_keywords = []
  65. for document in documents:
  66. # get the document keywords
  67. document_keywords = keyword_table_handler.extract_keywords(document.page_content, None)
  68. document.metadata["keywords"] = document_keywords
  69. documents_keywords.append(document_keywords)
  70. # Counter query keywords(TF)
  71. query_keyword_counts = Counter(query_keywords)
  72. # total documents
  73. total_documents = len(documents)
  74. # calculate all documents' keywords IDF
  75. all_keywords = set()
  76. for document_keywords in documents_keywords:
  77. all_keywords.update(document_keywords)
  78. keyword_idf = {}
  79. for keyword in all_keywords:
  80. # calculate include query keywords' documents
  81. doc_count_containing_keyword = sum(1 for doc_keywords in documents_keywords if keyword in doc_keywords)
  82. # IDF
  83. keyword_idf[keyword] = math.log((1 + total_documents) / (1 + doc_count_containing_keyword)) + 1
  84. query_tfidf = {}
  85. for keyword, count in query_keyword_counts.items():
  86. tf = count
  87. idf = keyword_idf.get(keyword, 0)
  88. query_tfidf[keyword] = tf * idf
  89. # calculate all documents' TF-IDF
  90. documents_tfidf = []
  91. for document_keywords in documents_keywords:
  92. document_keyword_counts = Counter(document_keywords)
  93. document_tfidf = {}
  94. for keyword, count in document_keyword_counts.items():
  95. tf = count
  96. idf = keyword_idf.get(keyword, 0)
  97. document_tfidf[keyword] = tf * idf
  98. documents_tfidf.append(document_tfidf)
  99. def cosine_similarity(vec1, vec2):
  100. intersection = set(vec1.keys()) & set(vec2.keys())
  101. numerator = sum(vec1[x] * vec2[x] for x in intersection)
  102. sum1 = sum(vec1[x] ** 2 for x in vec1)
  103. sum2 = sum(vec2[x] ** 2 for x in vec2)
  104. denominator = math.sqrt(sum1) * math.sqrt(sum2)
  105. if not denominator:
  106. return 0.0
  107. else:
  108. return float(numerator) / denominator
  109. similarities = []
  110. for document_tfidf in documents_tfidf:
  111. similarity = cosine_similarity(query_tfidf, document_tfidf)
  112. similarities.append(similarity)
  113. # for idx, similarity in enumerate(similarities):
  114. # print(f"Document {idx + 1} similarity: {similarity}")
  115. return similarities
  116. def _calculate_cosine(
  117. self, tenant_id: str, query: str, documents: list[Document], vector_setting: VectorSetting
  118. ) -> list[float]:
  119. """
  120. Calculate Cosine scores
  121. :param query: search query
  122. :param documents: documents for reranking
  123. :return:
  124. """
  125. query_vector_scores = []
  126. model_manager = ModelManager()
  127. embedding_model = model_manager.get_model_instance(
  128. tenant_id=tenant_id,
  129. provider=vector_setting.embedding_provider_name,
  130. model_type=ModelType.TEXT_EMBEDDING,
  131. model=vector_setting.embedding_model_name,
  132. )
  133. cache_embedding = CacheEmbedding(embedding_model)
  134. query_vector = cache_embedding.embed_query(query)
  135. for document in documents:
  136. # calculate cosine similarity
  137. if "score" in document.metadata:
  138. query_vector_scores.append(document.metadata["score"])
  139. else:
  140. # transform to NumPy
  141. vec1 = np.array(query_vector)
  142. vec2 = np.array(document.vector)
  143. # calculate dot product
  144. dot_product = np.dot(vec1, vec2)
  145. # calculate norm
  146. norm_vec1 = np.linalg.norm(vec1)
  147. norm_vec2 = np.linalg.norm(vec2)
  148. # calculate cosine similarity
  149. cosine_sim = dot_product / (norm_vec1 * norm_vec2)
  150. query_vector_scores.append(cosine_sim)
  151. return query_vector_scores