Jyong 57729823a0 fix wrong method using (#6459) 9 mēneši atpakaļ
..
configs 2ba05b041f refactor(myscale):Set the default value of the myscale vector db in DifyConfig. (#6441) 9 mēneši atpakaļ
constants 6ef401a9f0 feat:add tts-streaming config and future (#5492) 9 mēneši atpakaļ
controllers afe95fa780 feat: support get workflow task execution status (#6411) 9 mēneši atpakaļ
core 9e168f9d1c feat: support gpt-4o-mini for openrouter provider (#6447) 9 mēneši atpakaļ
docker 5236cb1888 fix: kill signal is not passed to the main process (#6159) 9 mēneši atpakaļ
events d320d1468d Feat/delete file when clean document (#5882) 9 mēneši atpakaļ
extensions 7c397f5722 update celery beat scheduler time to env (#6352) 9 mēneši atpakaļ
fields 9622fbb62f feat: app rate limit (#5844) 9 mēneši atpakaļ
libs 9622fbb62f feat: app rate limit (#5844) 9 mēneši atpakaļ
migrations 9622fbb62f feat: app rate limit (#5844) 9 mēneši atpakaļ
models 8a80af39c9 refactor(models&tools): switch to dify_config in models and tools. (#6394) 9 mēneši atpakaļ
schedule e493ce9981 update clean embedding cache logic (#6434) 9 mēneši atpakaļ
services 57729823a0 fix wrong method using (#6459) 9 mēneši atpakaļ
tasks 443e96777b update empty document caused delete exist collection (#6392) 9 mēneši atpakaļ
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) 9 mēneši atpakaļ
tests 4a026fa352 Enhancement: add model provider - Amazon Sagemaker (#6255) 9 mēneši atpakaļ
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) 10 mēneši atpakaļ
.env.example 7c397f5722 update celery beat scheduler time to env (#6352) 9 mēneši atpakaļ
Dockerfile 9b7c74a5d9 chore: skip pip upgrade preparation in api dockerfile (#5999) 9 mēneši atpakaļ
README.md 2d6624cf9e typo: Update README.md (#5987) 9 mēneši atpakaļ
app.py d7f75d17cc Chore/remove-unused-code (#5917) 9 mēneši atpakaļ
commands.py 7c70eb87bc feat: support AnalyticDB vector store (#5586) 9 mēneši atpakaļ
poetry.lock 4e2fba404d WebscraperTool bypass cloudflare site by cloudscraper (#6337) 9 mēneši atpakaļ
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) 10 mēneši atpakaļ
pyproject.toml 4e2fba404d WebscraperTool bypass cloudflare site by cloudscraper (#6337) 9 mēneši atpakaļ

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   docker compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh