呆萌闷油瓶 d28446301f feat:add fishaudio in xinference (#8100) 7 hónapja
..
.idea 7ae728a9a3 fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) 8 hónapja
.vscode 0d4753785f chore: remove .idea and .vscode from root path (#7437) 8 hónapja
configs d542b15cc0 feat: support redis sentinel mode (#7756) 7 hónapja
constants 2d7954c7da Fix variable typo (#8084) 7 hónapja
contexts 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 hónapja
controllers 2d7954c7da Fix variable typo (#8084) 7 hónapja
core d28446301f feat:add fishaudio in xinference (#8100) 7 hónapja
docker 8dfdb37de3 fix: use LOG_LEVEL for celery startup (#7628) 8 hónapja
events 2d7954c7da Fix variable typo (#8084) 7 hónapja
extensions d542b15cc0 feat: support redis sentinel mode (#7756) 7 hónapja
fields 80aa7c4019 feat: allow users to use the app icon as the answer icon (#7888) 7 hónapja
libs fbf31b5d52 feat: custom app icon (#7196) 8 hónapja
migrations 80aa7c4019 feat: allow users to use the app icon as the answer icon (#7888) 7 hónapja
models 2d7954c7da Fix variable typo (#8084) 7 hónapja
schedule 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 hónapja
services feefeb44d7 fix LangSmith project config error (#7996) 7 hónapja
tasks 2d7954c7da Fix variable typo (#8084) 7 hónapja
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) 9 hónapja
tests 2d7954c7da Fix variable typo (#8084) 7 hónapja
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) 10 hónapja
.env.example 2060db8e11 fix: change milvus init args from (host, port) to (url, token) (#8019) 7 hónapja
Dockerfile f76bbbf5e6 chore(Dockerfile): Bump expat to 2.6.2-2 (#7904) 7 hónapja
README.md fb5e3662d5 Chores: add missing profile for middleware docker compose cmd and fix ssrf-proxy doc link (#6372) 9 hónapja
app.py 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 hónapja
commands.py ceb2b150ff enhance: include workspace name in create-tenant command (#7834) 7 hónapja
poetry.lock 89aede80cc Add OCI(Oracle Cloud Infrastructure) Generative AI Service as a Model Provider (#7775) 7 hónapja
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) 10 hónapja
pyproject.toml 89aede80cc Add OCI(Oracle Cloud Infrastructure) Generative AI Service as a Model Provider (#7775) 7 hónapja

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh