HowardChan 53f37a6704 fix:ollama text embedding 500 error (#8252) 7 月之前
..
.idea 7ae728a9a3 fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) 8 月之前
.vscode 0d4753785f chore: remove .idea and .vscode from root path (#7437) 8 月之前
configs dabfd74622 feat: Parallel Execution of Nodes in Workflows (#8192) 7 月之前
constants 2d7954c7da Fix variable typo (#8084) 7 月之前
contexts 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 月之前
controllers c5b3777d93 editor can also create api key (#8214) 7 月之前
core 53f37a6704 fix:ollama text embedding 500 error (#8252) 7 月之前
docker 8dfdb37de3 fix: use LOG_LEVEL for celery startup (#7628) 8 月之前
events 2d7954c7da Fix variable typo (#8084) 7 月之前
extensions c8df92d0eb add volcengine tos storage (#8164) 7 月之前
fields 80aa7c4019 feat: allow users to use the app icon as the answer icon (#7888) 7 月之前
libs fbf31b5d52 feat: custom app icon (#7196) 8 月之前
migrations dabfd74622 feat: Parallel Execution of Nodes in Workflows (#8192) 7 月之前
models d109881410 chore(api/models): apply ruff reformatting (#7600) 7 月之前
schedule 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 月之前
services dabfd74622 feat: Parallel Execution of Nodes in Workflows (#8192) 7 月之前
tasks 2d7954c7da Fix variable typo (#8084) 7 月之前
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) 9 月之前
tests dabfd74622 feat: Parallel Execution of Nodes in Workflows (#8192) 7 月之前
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) 10 月之前
.env.example c8df92d0eb add volcengine tos storage (#8164) 7 月之前
Dockerfile fede54be77 fix: Version '2.6.2-2' for 'expat' was not found (#8182) 7 月之前
README.md fb5e3662d5 Chores: add missing profile for middleware docker compose cmd and fix ssrf-proxy doc link (#6372) 9 月之前
app.py 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 月之前
commands.py ceb2b150ff enhance: include workspace name in create-tenant command (#7834) 7 月之前
poetry.lock c8df92d0eb add volcengine tos storage (#8164) 7 月之前
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) 10 月之前
pyproject.toml d109881410 chore(api/models): apply ruff reformatting (#7600) 7 月之前

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh